DOI QR코드

DOI QR Code

Superhydrophobic carbon-based materials: a review of synthesis, structure, and applications

  • Received : 2014.02.06
  • Accepted : 2014.03.25
  • Published : 2014.04.30

Abstract

Materials with appropriate surface roughness and low surface energy can form superhydrophobic surfaces, displaying water contact angles greater than $150^{\circ}$. Superhydrophobic carbon-based materials are particularly interesting due to their exceptional physicochemical properties. This review discusses the various techniques used to produce superhydrophobic carbon-based materials such as carbon fibers, carbon nanotubes, graphene, amorphous carbons, etc. Recent advances in emerging fields such as energy, environmental remediation, and thermal management in relation to these materials are also discussed.

Keywords

References

  1. Qiao R, Zhang R, Zhu W, Gong P. Lab simulation of profile modification and enhanced oil recovery with a quaternary ammonium cationic polymer. J Ind Eng Chem, 18, 111 (2012). http://dx.doi.org/10.1016/j.jiec.2011.11.092.
  2. Lafuma A, Quere D. Superhydrophobic states. Nat Mater, 2, 457 (2003). http://dx.doi.org/10.1038/nmat924.
  3. Feng XJ, Jiang L. Design and creation of superwetting/antiwetting surfaces. Adv Mater, 18, 3063 (2006). http://dx.doi.org/10.1002/adma.200501961.
  4. Fei T, Chen H, Lin J. Transparent superhydrophobic films possessing high thermal stability and improved moisture resistance from the deposition of MTMS-based aerogels. Colloids Surf Physicochem Eng Aspects, 443, 255 (2014). http://dx.doi.org/10.1016/j.colsurfa.2013.11.027.
  5. Wolfs M, Darmanin T, Guittard F. Superhydrophobic fibrous polymers. Polym Rev, 53, 460 (2013). http://dx.doi.org/10.1080/15583724.2013.808666.
  6. Fowkes FM, Zisman WA. Contact Angle, Wettability, and Adhesion (Advances in Chemistry Series Vol. 43), American Chemical Society, Washington, DC (1964).
  7. Johnson RE, Dettre RH. Contact angle hysteresis. In: Fowkes FM, Zisman WA, eds. Contact Angle, Wettability, and Adhesion (Advances in Chemistry Series Vol. 43), American Chemical Society, Washington, DC, 112 (1964). http://dx.doi.org/10.1021/ba-1964-0043.ch007.
  8. Ahn CH, Baek Y, Lee C, Kim SO, Kim S, Lee S, Kim SH, Bae SS, Park J, Yoon J. Carbon nanotube-based membranes: fabrication and application to desalination. J Ind Eng Chem, 18, 1551 (2012). http://dx.doi.org/10.1016/j.jiec.2012.04.005.
  9. Barthlott W, Ehler N. Raster-Elektronenmikroskopie der Epidermis-Oberflachen von Spermatophyten (Tropische und subtropische Pflanzenwelt Vol. 19), Akademie der Wiss. u.d. Literatur, Mainz (1977).
  10. Quere D. Rough ideas on wetting. Physica A, 313, 32 (2002). http://dx.doi.org/10.1016/S0378-4371(02)01033-6.
  11. Celia E, Darmanin T, Taffin de Givenchy E, Amigoni S, Guittard F. Recent advances in designing superhydrophobic surfaces. J Colloid Interface Sci, 402, 1 (2013). http://dx.doi.org/10.1016/j.jcis.2013.03.041.
  12. Yong J, Yang Q, Chen F, Zhang D, Du G, Bian H, Si J, Yun F, Hou X. Superhydrophobic PDMS surfaces with three-dimensional (3D) pattern-dependent controllable adhesion. Appl Surf Sci, 288, 579 (2014). http://dx.doi.org/10.1016/j.apsusc.2013.10.076.
  13. Taylor P. The wetting of leaf surfaces. Curr Opin Colloid Interface Sci, 16, 326 (2011). http://dx.doi.org/10.1016/j.cocis.2010.12.003.
  14. Shirtcliffe NJ, McHale G, I. Newton M. The superhydrophobicity of polymer surfaces: Recent developments. J Polym Sci B, 49, 1203 (2011). http://dx.doi.org/10.1002/polb.22286.
  15. Hassan AF, Youssef AM, Priecel P. Removal of deltamethrin insecticide over highly porous activated carbon prepared from pistachio nutshells. Carbon Lett, 14, 234 (2013). http://dx.doi.org/10.5714/CL.2013.14.4.234.
  16. Song YI, Lee JW, Kim TY, Jung HJ, Jung YC, Suh SJ, Yang CM. Performance-determining factors in flexible transparent conducting single-wall carbon nanotube film. Carbon Lett, 14, 255 (2013). http://dx.doi.org/10.5714/CL.2013.14.4.255.
  17. Kim SG, Park OK, Lee JH, Ku BC. Layer-by-layer assembled graphene oxide films and barrier properties of thermally reduced graphene oxide membranes. Carbon Lett, 14, 247 (2013). http://dx.doi.org/10.5714/CL.2013.14.4.247.
  18. Choi WK, Kim BJ, Park SJ. Fiber surface and electrical conductivity of electroless Ni-plated PET ultra-fine fibers. Carbon Lett, 14, 243 (2013). http://dx.doi.org/10.5714/CL.2013.14.4.243.
  19. Li B, Zhao Z, Gao F, Wang X, Qiu J. Mesoporous microspheres composed of carbon-coated $TiO_2$ nanocrystals with exposed {0 0 1} facets for improved visible light photocatalytic activity. Appl Catal B, 147, 958 (2014). http://dx.doi.org/10.1016/j.apcatb.2013.10.027.
  20. Jain A, Jayaraman S, Balasubramanian R, Srinivasan MP. Hydrothermal pre-treatment for mesoporous carbon synthesis: enhancement of chemical activation. J Mater Chem A, 2, 520 (2014). http://dx.doi.org/10.1039/C3TA12648J.
  21. Wu D, Li Y, Zhang Y, Wang P, Wei Q, Du B. Sensitive electrochemical sensor for simultaneous determination of dopamine, ascorbic acid, and uric acid enhanced by amino-group functionalized mesoporous $Fe_3O_4$@graphene sheets. Electrochim Acta, 116, 244 (2014). http://dx.doi.org/10.1016/j.electacta.2013.11.033.
  22. Zhu Z, Hu Y, Jiang H, Li C. A three-dimensional ordered mesoporous carbon/carbon nanotubes nanocomposites for supercapacitors. J Power Sources, 246, 402 (2014). http://dx.doi.org/10.1016/j.jpowsour.2013.07.086.
  23. Tao G, Zhang L, Hua Z, Chen Y, Guo L, Zhang J, Shu Z, Gao J, Chen H, Wu W, Liu Z, Shi J. Highly efficient adsorbents based on hierarchically macro/mesoporous carbon monoliths with strong hydrophobicity. Carbon, 66, 547 (2014). http://dx.doi.org/10.1016/j.carbon.2013.09.037.
  24. Liu J, Yang T, Wang DW, Lu GQ, Zhao D, Qiao SZ. A facile soft-template synthesis of mesoporous polymeric and carbonaceous nanospheres. Nat Commun, 4, 2798 (2013). http://dx.doi.org/10.1038/ncomms3798.
  25. Kim JM, Song IS, Cho D, Hong I. Effect of carbonization temperature and chemical pre-treatment on the thermal change and fiber morphology of kenafbased carbon fibers. Carbon Lett, 12, 131 (2011). http://dx.doi.org/10.5714/CL.2011.12.3.131.
  26. Lee S, Kim J, Ku BC, Kim J, Chung Y. Effect of process condition on tensile properties of carbon fiber. Carbon Lett, 12, 26 (2011). https://doi.org/10.5714/CL.2011.12.1.026
  27. Asghar HMA, Hussain SN, Roberts EPL, Campen AK, Brown NW. Pre-treatment of adsorbents for waste water treatment using adsorption coupled-with electrochemical regeneration. J Ind Eng Chem, 19, 1689 (2013). http://dx.doi.org/10.1016/j.jiec.2013.02.007.
  28. Han M, Yun J, Kim HI, Lee YS. Effect of surface modification of graphene oxide on photochemical stability of poly(vinyl alcohol)/graphene oxide composites. J Ind Eng Chem, 18, 752 (2012). http://dx.doi.org/10.1016/j.jiec.2011.11.122.
  29. Cho D, Yoon SB, Cho CW, Park JK. Effect of additional heat-treatment temperature on chemical, microstructural, mechanical, and electrical properties of commercial PAN-based carbon fibers. Carbon Lett, 12, 223 (2011). http://dx.doi.org/10.5714/CL.2011.12.4.223.
  30. Chen Z, Dong L, Yang D, Lu H. Superhydrophobic graphenebased materials: surface construction and functional applications. Adv Mater, 25, 5352 (2013). http://dx.doi.org/10.1002/adma.201302804.
  31. Nguyen DD, Tai NH, Lee SB, Kuo WS. Superhydrophobic and superoleophilic properties of graphene-based sponges fabricated using a facile dip coating method. Energy Environ Sci, 5, 7908 (2012). http://dx.doi.org/10.1039/C2EE21848H.
  32. Zheng L, Li Z, Bourdo S, Khedir KR, Asar MP, Ryerson CC, Biris AS. Exceptional superhydrophobicity and low velocity impact icephobicity of acetone-functionalized carbon nanotube films. Langmuir, 27, 9936 (2011). http://dx.doi.org/10.1021/la201548k.
  33. Bayer IS, Steele A, Loth E. Superhydrophobic and electroconductive carbon nanotube-fluorinated acrylic copolymer nanocomposites from emulsions. Chem Eng J, 221, 522 (2013). http:// dx.doi.org/10.1016/j.cej.2013.01.023.
  34. Yao L, He J. Recent progress in antireflection and self-cleaning technology: from surface engineering to functional surfaces. Prog Mater Sci, 61, 94 (2014). http://dx.doi.org/10.1016/j.pmatsci.2013.12.003.
  35. Zhou Y, Wang B, Song X, Li E, Li G, Zhao S, Yan H. Control over the wettability of amorphous carbon films in a large range from hydrophilicity to super-hydrophobicity. Appl Surf Sci, 253, 2690 (2006). http://dx.doi.org/10.1016/j.apsusc.2006.05.118.
  36. Chen CH, Cai Q, Tsai C, Chen CL, Xiong G, Yu Y, Ren Z. Dropwise condensation on superhydrophobic surfaces with two-tier roughness. Appl Phys Lett, 90, 173108 (2007). http://dx.doi.org/10.1063/1.2731434.
  37. Li Y, Huang XJ, Heo SH, Li CC, Choi YK, Cai WP, Cho SO. Superhydrophobic bionic surfaces with hierarchical microsphere/SWCNT composite arrays. Langmuir, 23, 2169 (2006). http://dx.doi.org/10.1021/la0620758.
  38. Wang Z, Lopez C, Hirsa A, Koratkar N. Impact dynamics and rebound of water droplets on superhydrophobic carbon nanotube arrays. Appl Phys Lett, 91, 023105 (2007). http://dx.doi.org/10.1063/1.2756296.
  39. Zhou XH, Cui GL, Zhi LJ, Zhang SS. Large-area helical carbon microcoils with superhydropho-bicity over a wide range of pH values. New Carbon Mater, 22, 1 (2007). https://doi.org/10.1016/S1872-5805(07)60005-5
  40. Hsieh CT, Chen WY, Wu FL. Fabrication and superhydrophobicity of fluorinated carbon fabrics with micro/nanoscaled two-tier roughness. Carbon, 46, 1218 (2008). http://dx.doi.org/10.1016/j.carbon.2008.04.026.
  41. Hsieh CT, Wu FL, Yang SY. Superhydrophobicity from composite nano/microstructures: carbon fabrics coated with silica nanoparticles. Surf Coat Technol, 202, 6103 (2008). http://dx.doi.org/10.1016/j.surfcoat.2008.07.006.
  42. Li J, Sambandam S, Lu W, Lukehart CM. Carbon nanofibers "spot-welded" to carbon felt: a mechanically stable, bulk mimic of lotus leaves. Adv Mater, 20, 420 (2008). http://dx.doi.org/10.1002/adma.200700444.
  43. Luo C, Zuo X, Wang L, Wang E, Song S, Wang J, Wang J, Fan C, Cao Y. Flexible carbon nanotube: polymer composite films with high conductivity and superhydrophobicity made by solution process. Nano Lett, 8, 4454 (2008). http://dx.doi.org/10.1021/nl802411d.
  44. Ma M, Hill RM, Rutledge GC. A review of recent results on superhydrophobic materials based on micro- and nanofibers. J Adhes Sci Technol, 22, 1799 (2008). http://dx.doi.org/10.1163/156856108X319980.
  45. Srinivasan S, Praveen VK, Philip R, Ajayaghosh A. Bioinspired superhydrophobic coatings of carbon nanotubes and linear ${\pi}$ systems based on the "bottom-up" self-assembly approach. Angew Chem Int Ed, 47, 5750 (2008). http://dx.doi.org/10.1002/anie.200802097.
  46. Wang N, Xi J, Wang S, Liu H, Feng L, Jiang L. Long-term and thermally stable superhydrophobic surfaces of carbon nanofibers. J Colloid Interface Sci, 320, 365 (2008). http://dx.doi.org/10.1016/j.jcis.2008.01.005.
  47. Xiao X, Cheng YT, Sheldon BW, Rankin J. Condensed water on superhydrophobic carbon films. J Mater Res, 23, 2174 (2008). http://dx.doi.org/10.1557/JMR.2008.0260.
  48. Zou J, Chen H, Chunder A, Yu Y, Huo Q, Zhai L. Preparation of a superhydrophobic and conductive nanocomposite coating from a carbon-nanotube-conjugated block copolymer dispersion. Adv Mater, 20, 3337 (2008). http://dx.doi.org/10.1002/adma.200703094.
  49. Bai BC, Cho S, Yu HR, Yi KB, Kim KD, Lee YS. Effects of aminated carbon molecular sieves on breakthrough curve behavior in $CO_2/CH_4$ separation. J Ind Eng Chem, 19, 776 (2013). http://dx.doi.org/10.1016/j.jiec.2012.10.016.
  50. Ghaedi M, Montazerozohori M, Sajedi M, Roosta M, Nickoosiar Jahromi M, Asghari A. Comparison of novel sorbents for preconcentration of metal ions prior to their flame atomic absorption spectrometry determination. J Ind Eng Chem, 19, 1781 (2013). http://dx.doi.org/10.1016/j.jiec.2013.02.020.
  51. Ghaedi M, Montazerozohori M, Rahimi N, Biysreh MN. Chemically modified carbon nanotubes as efficient and selective sorbent for enrichment of trace amount of some metal ions. J Ind Eng Chem, 19, 1477 (2013). http://dx.doi.org/10.1016/j.jiec.2013.01.011.
  52. Charinpanitkul T, Suthabanditpong W, Watanabe H, Shirai T, Faungnawakij K, Viriya-empikul N, Fuji M. Improved hydrophilicity of zinc oxide-incorporated layer-by-layer polyelectrolyte film fabricated by dip coating method. J Ind Eng Chem, 18, 1441 (2012). http://dx.doi.org/10.1016/j.jiec.2012.02.003.
  53. Bai BC, Kim JG, Im JS, Jung SC, Lee YS. Influence of oxyfluorination on activated carbon nanofibers for $CO_2$ storage. Carbon Lett, 12, 236 (2011). http://dx.doi.org/10.5714/CL.2011.12.4.236.
  54. Park SJ, Lee HY. Effect of atmospheric-pressure plasma on adhesion characteristics of polyimide film. J Colloid Interface Sci, 285, 267 (2005). http://dx.doi.org/10.1016/j.jcis.2004.11.062.
  55. Chauhan NPS. Structural and thermal characterization of macrobranched functional terpolymer containing 8-hydroxyquinoline moieties with enhancing biocidal properties. J Ind Eng Chem, 19, 1014 (2013). http://dx.doi.org/10.1016/j.jiec.2012.11.025.
  56. Heo GY, Yoo YJ, Park SJ. Effect of carbonization temperature on electrical conductivity of carbon papers prepared from petroleum pitch-coated glass fibers. J Ind Eng Chem, 19, 1040 (2013). http://dx.doi.org/10.1016/j.jiec.2012.11.028.
  57. Lee JH, Kim IJ, Park SJ. Preparation and electrochemical behaviors of styrene-acrylonitrile-based porous carbon electrodes. Electrochim Acta, 113, 23 (2013). http://dx.doi.org/10.1016/j.electacta.2013.09.006.
  58. Jin FL, Ma CJ, Park SJ. Thermal and mechanical interfacial properties of epoxy composites based on functionalized carbon nanotubes. Mater Sci Eng A, 528, 8517 (2011). http://dx.doi.org/10.1016/j.msea.2011.08.054.
  59. Bikshapathi M, Verma N, Singh RK, Joshi HC, Srivastava A. Preparation of activated carbon fibers from cost effective commercial textile grade acrylic fibers. Carbon Lett, 12, 44 (2011). http://dx.doi.org/10.5714/CL.2011.12.1.044.
  60. Abdullah ID, Girgis BS, Tmerek YM, Badawy EH. Potential of activated carbon derived from local common reed in the refining of raw cane sugar. Carbon Lett, 11, 192 (2011). https://doi.org/10.5714/CL.2010.11.3.192
  61. Kaneko K, Arai M, Yamamoto M, Ohba T, Miyamoto JI, Kim DY, Tao Y, Yang CM, Urita K, Fujimori T, Tanaka H, Ohkubo T, Utsumi S, Hattori Y, Konishi T, Fujikawa T, Kanoh H, Yudasaka M, Hata K, Yumura M, Iijima S, Muramatsu H, Hayashi T, Kim YA, Endo M. Fundamental understanding of nanoporous carbons for energy application potentials. Carbon Lett, 10, 177 (2009). https://doi.org/10.5714/CL.2009.10.3.177
  62. Lee SY, Park SJ. $TiO_2$ photocatalyst for water treatment applications. J Ind Eng Chem, 19, 1761 (2013). http://dx.doi.org/10.1016/j.jiec.2013.07.012.
  63. Lee SY, Yop Rhee K, Nahm SH, Park SJ. Effect of p-type multi-walled carbon nanotubes for improving hydrogen storage behaviors. J Solid State Chem, 210, 256 (2014). http://dx.doi.org/10.1016/j.jssc.2013.11.026.
  64. Mao C, Liang C, Luo W, Bao J, Shen J, Hou X, Zhao W. Preparation of lotus-leaf-like polystyrene micro- and nanostructure films and its blood compatibility. J Mater Chem, 19, 9025 (2009). http://dx.doi.org/10.1039/B912314H.
  65. Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 202, 1 (1997). http://dx.doi.org/10.1007/s004250050096.
  66. Neinhuis C, Barthlott W. Characterization and distribution of water-repellent, self-cleaning plant surfaces. Ann Bot, 79, 667 (1997). http://dx.doi.org/10.1006/anbo.1997.0400.
  67. Feng L, Li S, Li Y, Li H, Zhang L, Zhai J, Song Y, Liu B, Jiang L, Zhu D. Super-hydrophobic surfaces: from natural to artificial. Adv Mater, 14, 1857 (2002). http://dx.doi.org/10.1002/adma.200290020.
  68. Jin M, Feng X, Feng L, Sun T, Zhai J, Li T, Jiang L. Superhydrophobic aligned polystyrene nanotube films with high adhesive force. Adv Mater, 17, 1977 (2005). http://dx.doi.org/10.1002/adma.200401726.
  69. Wenzel RN. Resistance of solid surfaces to wetting by water. Ind Eng Chem, 28, 988 (1936). http://dx.doi.org/10.1021/ie50320a024.
  70. Cassie ABD, Baxter S. Wettability of porous surfaces. Trans Faraday Soc, 40, 546 (1944). http://dx.doi.org/10.1039/TF9444000546.
  71. Wang J, Chen H, Sui T, Li A, Chen D. Investigation on hydrophobicity of lotus leaf: experiment and theory. Plant Sci, 176, 687 (2009). http://dx.doi.org/10.1016/j.plantsci.2009.02.013.
  72. Yu Y, Zhao ZH, Zheng QS. Mechanical and superhydrophobic stabilities of two-scale surfacial structure of lotus leaves. Langmuir, 23, 8212 (2007). http://dx.doi.org/10.1021/la7003485.
  73. Robinson A. The Last Man Who Knew Everything: Thomas Young, the Anonymous Polymath Who Proved Newton Wrong, Explained How We See, Cured the Sick, and Deciphered the Rosetta Stone, Among Other Feats of Genius, Pi Press, New York, NY (2006).
  74. Lee MW, An S, Latthe SS, Lee C, Hong S, Yoon SS. Electrospun polystyrene nanofiber membrane with superhydrophobicity and superoleophilicity for selective separation of water and low viscous oil. ACS Appl Mater Interfaces, 5, 10597 (2013). http://dx.doi.org/10.1021/am404156k.
  75. Chang CH, Hsu MH, Weng CJ, Hung WI, Chuang TL, Chang KC, Peng CW, Yen YC, Yeh JM. 3D-bioprinting approach to fabricate superhydrophobic epoxy/organophilic clay as an advanced anticorrosive coating with the synergistic effect of superhydrophobicity and gas barrier properties. J Mater Chem A, 1, 13869 (2013). http://dx.doi.org/10.1039/C3TA12754K.
  76. Gupta N, Kavya MV, Singh YRG, Jyothi J, Barshilia HC. Superhydrophobicity on transparent fluorinated ethylene propylene films with nano-protrusion morphology by Ar + $O_2$ plasma etching: study of the degradation in hydrophobicity after exposure to the environment. J Appl Phys, 114, 164307 (2013). http://dx.doi.org/10.1063/1.4826897.
  77. Yu E, Lee HJ, Ko TJ, Kim SJ, Lee KR, Oh KH, Moon MW. Hierarchical structures of AlOOH nanoflakes nested on Si nanopillars with anti-reflectance and superhydrophobicity. Nanoscale, 5, 10014 (2013). http://dx.doi.org/10.1039/C3NR02395H.
  78. Wu J, Li J, Deng B, Jiang H, Wang Z, Yu M, Li L, Xing C, Li Y. Self-healing of the superhydrophobicity by ironing for the abrasion durable superhydrophobic cotton fabrics. Sci Rep, 3, 2951 (2013). http://dx.doi.org/10.1038/srep02951.
  79. Cao L, Liu J, Xu S, Xia Y, Huang W, Li Z. Inherent superhydrophobicity of Sn/SnOx films prepared by surface self-passivation of electrodeposited porous dendritic Sn. Mater Res Bull, 48, 4804 (2013). http://dx.doi.org/10.1016/j.materresbull.2013.08.044.
  80. Timonen JV, Latikka M, Ikkala O, Ras RH. Free-decay and resonant methods for investigating the fundamental limit of superhydrophobicity. Nat Commun, 4, 2398 (2013). http://dx.doi.org/10.1038/ncomms3398.
  81. Meng LY, Rhee KY, Park SJ. Enhancement of superhydrophobicity and conductivity of carbon nanofibers-coated glass fabrics. J Ind Eng Chem, 2014 in press. http://dx.doi.org/10.1016/j.jiec.2013.08.015.
  82. Wang S, Song Y, Jiang L. Photoresponsive surfaces with controllable wettability. J Photochem Photobiol C, 8, 18 (2007). http://dx.doi.org/10.1016/j.jphotochemrev.2007.03.001.
  83. Barthlott W, Schimmel T, Wiersch S, Koch K, Brede M, Barczewski M, Walheim S, Weis A, Kaltenmaier A, Leder A, Bohn HF. The Salvinia paradox: superhydrophobic surfaces with hydrophilic pins for air retention under water. Adv Mater, 22, 2325 (2010). http://dx.doi.org/10.1002/adma.200904411.
  84. Cui XS, Li W. On the possibility of superhydrophobic behavior for hydrophilic materials. J Colloid Interface Sci, 347, 156 (2010). http://dx.doi.org/10.1016/j.jcis.2010.03.065.
  85. Marmur A. From hygrophilic to superhygrophobic: theoretical conditions for making high-contact-angle surfaces from low-contact-angle materials. Langmuir, 24, 7573 (2008). http://dx.doi.org/10.1021/la800304r.
  86. Liu JL, Feng XQ, Wang G, Yu SW. Mechanisms of superhydrophobicity on hydrophilic substrates. J Phys: Condens Matter, 19, 356002 (2007). http://dx.doi.org/10.1088/0953-8984/19/35/356002.
  87. Herminghaus S. Roughness-induced non-wetting. Europhys Lett, 52, 165 (2000). http://dx.doi.org/10.1209/epl/i2000-00418-8.
  88. Zhang X, Shi F, Niu J, Jiang Y, Wang Z. Superhydrophobic surfaces: from structural control to functional application. J Mater Chem, 18, 621 (2008). http://dx.doi.org/10.1039/B711226B.
  89. Wang FJ, Li CQ, Tan ZS, Li W, Ou JF, Xue MS. PVDF surfaces with stable superhydrophobicity. Surf Coat Technol, 222, 55 (2013). http://dx.doi.org/10.1016/j.surfcoat.2013.02.004.
  90. Liu H, Zhai J, Jiang L. Wetting and anti-wetting on aligned carbon nanotube films. Soft Matter, 2, 811 (2006). http://dx.doi.org/10.1039/B606654B.
  91. Park SJ, Brendle M. London dispersive component of the surface free energy and surface enthalpy. J Colloid Interface Sci, 188, 336 (1997). http://dx.doi.org/10.1006/jcis.1997.4763.
  92. Park SJ, Seo MK. Solid-liquid interface. Interface Sci Technol, 18, 147 (2011). http://dx.doi.org/10.1016/B978-0-12-375049-5.00003-7.
  93. Fowkes FM. Determination of interfacial tensions, contact angles, and dispersion forces in surfaces by assuming additivity of intermolecular interactions in surfaces. J Phys Chem, 66, 382 (1962). http://dx.doi.org/10.1021/j100808a524.
  94. Fowkes FM. Additivity of intermolecular forces at interfaces. I. Determination of the contribution to surface and interfacial tensions of dispersion forces in various liquids. J Phys Chem, 67, 2538 (1963). http://dx.doi.org/10.1021/j100806a008.
  95. Park SJ, Cho MS, Lee JR. Studies on the surface free energy of carbon-carbon composites: effect of filler addition on the ILSS of composites. J Colloid Interface Sci, 226, 60 (2000). http://dx.doi.org/10.1006/jcis.2000.6787.
  96. Mironov VS, Kim SY, Park M. Electrical properties of polyethylene composite films filled with nickel powder and short carbon fiber hybrid filler. Carbon Lett, 14, 105 (2013). http://dx.doi.org/10.5714/CL.2013.14.2.105.
  97. Zhu J, Park SW, Joh HI, Kim HC, Lee S. Preparation and characterization of isotropic pitch-based carbon fiber. Carbon Lett, 14, 94 (2013). http://dx.doi.org/10.5714/CL.2013.14.2.094.
  98. Jin FL, Lee SY, Park SJ. Polymer matrices for carbon fiber-reinforced polymer composites. Carbon Lett, 14, 76 (2013). http://dx.doi.org/10.5714/CL.2013.14.2.076.
  99. Choi KE, Seo MK. A study on the preparation of the eco-friendly carbon fibers-reinforced composites. Carbon Lett, 14, 58 (2013). http://dx.doi.org/10.5714/CL.2013.14.1.058.
  100. Bliznakov S, Liu Y, Dimitrov N, Garnica J, Sedev R. Double-scale roughness and superhydrophobicity on metalized toray carbon fiber paper. Langmuir, 25, 4760 (2009). http://dx.doi.org/10.1021/la803932k.
  101. Park KM, Lee BS, Youk JH, Lee J, Yu WR. Moisture condensation behavior of hierarchically carbon nanotube-grafted carbon nanofibers. ACS Appl Mater Interfaces, 5, 11115 (2013). http://dx.doi.org/10.1021/am403348q.
  102. Meng LY, Park SJ. Effect of growth of graphite nanofibers on superhydrophobic and electrochemical properties of carbon fibers. Mater Chem Phys, 132, 324 (2012). http://dx.doi.org/10.1016/j.matchemphys.2011.11.024.
  103. Meng LY, Moon CW, Im SS, Lee KH, Byun JH, Park SJ. Effect of Ni catalyst dispersion on the growth of carbon nanofibers onto carbon fibers. Microporous Mesoporous Mater, 142, 26 (2011). http://dx.doi.org/10.1016/j.micromeso.2010.10.008.
  104. Meng LY, Park SJ. Effect of growth of carbon nanofibers on the electrical conductivity of carbon fibers. Macromol Res, 19, 209 (2011). http://dx.doi.org/10.1007/s13233-011-0209-1.
  105. Meng LY, Park SJ. Influence of carbon nanofibers on electrochemical properties of carbon nanofibers/glass fibers composites. Curr Appl Phys, 13, 640 (2013). http://dx.doi.org/10.1016/j.cap.2012.10.008.
  106. Wang P, Zhang D, Qiu R, Wu J, Wan Y. Super-hydrophobic film prepared on zinc and its effect on corrosion in simulated marine atmosphere. Corros Sci, 69, 23 (2013). http://dx.doi.org/10.1016/j.corsci.2012.10.025.
  107. Jung MJ, Kim JW, Im JS, Park SJ, Lee YS. Nitrogen and hydrogen adsorption of activated carbon fibers modified by fluorination. J Ind Eng Chem, 15, 410 (2009). http://dx.doi.org/10.1016/j.jiec.2008.11.001.
  108. Kim S, Kuk Y-S, Chung YS, Jin FL, Park SJ. Preparation and characterization of polyacrylonitrile-based carbon fiber papers. J Ind Eng Chem, 2014 in press. http://dx.doi.org/10.1016/j.jiec.2013.12.032.
  109. Hsieh CT, Chen JM, Huang YH, Kuo RR, Li CT, Shih HC, Lin TS, Wu CF. Influence of fluorine/carbon atomic ratio on superhydrophobic behavior of carbon nanofiber arrays. J Vac Sci Technol B, 24, 113 (2006). http://dx.doi.org/10.1116/1.2150224.
  110. Lu P, Huang Q, Mukherjee A, Hsieh YL. SiCO-doped carbon fibers with unique dual superhydrophilicity/superoleophilicity and ductile and capacitance properties. ACS Appl Mater Interfaces, 2, 3738 (2010). http://dx.doi.org/10.1021/am100918x.
  111. Seo H, Kim KD, Jeong MG, Kim Y, Choi K, Hong E, Lee K, Lim D. Superhydrophobic carbon fiber surfaces prepared by growth of carbon nanostructures and polydimethylsiloxane coating. Macromol Res, 20, 216 (2012). http://dx.doi.org/10.1007/s13233-012-0029-y.
  112. Qiu R, Zhang D, Wang P. Superhydrophobic-carbon fibre growth on a zinc surface for corrosion inhibition. Corros Sci, 66, 350 (2013). http://dx.doi.org/10.1016/j.corsci.2012.09.041.
  113. Kim KS, Park SJ. Influence of carbon shell structure on electrochemical performance of multi-walled carbon nanotube electrodes. Anal Chim Acta, 788, 17 (2013). http://dx.doi.org/10.1016/j.aca.2013.05.047.
  114. Kim KS, Park SJ. Influence of amine-grafted multi-walled carbon nanotubes on physical and rheological properties of PMMA-based nanocomposites. J Solid State Chem, 184, 3021 (2011). http://dx.doi.org/10.1016/j.jssc.2011.09.012.
  115. Choi YC. Micro-Raman characterization of isolated single wall carbon nanotubes synthesized using Xylene. Carbon Lett, 14, 175 (2013). http://dx.doi.org/10.5714/CL.2013.14.3.175.
  116. Ibrahim KS. Carbon nanotubes: properties and applications: a review. Carbon Lett, 14, 131 (2013). http://dx.doi.org/10.5714/CL.2013.14.3.131.
  117. Zhu L, Xiu Y, Xu J, Tamirisa PA, Hess DW, Wong CP. Superhydrophobicity on two-tier rough surfaces fabricated by controlled growth of aligned carbon nanotube arrays coated with fluorocarbon. Langmuir, 21, 11208 (2005). http://dx.doi.org/10.1021/la051410+.
  118. Hong YC, Uhm HS. Superhydrophobicity of a material made from multiwalled carbon nanotubes. Appl Phys Lett, 88, 244101 (2006). http://dx.doi.org/10.1063/1.2210449.
  119. Jung YC, Bhushan B. Mechanically durable carbon nanotube: composite hierarchical structures with superhydrophobicity, selfcleaning, and low-drag. ACS Nano, 3, 4155 (2009). http://dx.doi.org/10.1021/nn901509r.
  120. Ramos SC, Vasconcelos G, Antunes EF, Lobo AO, Trava-Airoldi VJ, Corat EJ. $CO_2$ laser treatment for stabilization of the superhydrophobicity of carbon nanotube surfaces. J Vac Sci Technol B, 28, 1153 (2010). http://dx.doi.org/10.1116/1.3502024.
  121. Yang J, Zhang Z, Men X, Xu X, Zhu X. Reversible superhydrophobicity to superhydrophilicity switching of a carbon nanotube film via alternation of UV irradiation and dark storage. Langmuir, 26, 10198 (2010). http://dx.doi.org/10.1021/la100355n.
  122. Sun W, Zhou S, You B, Wu L. Polymer brush-functionalized surfaces with unique reversible double-stimulus responsive wettability. J Mater Chem A, 1, 10646 (2013). http://dx.doi.org/10.1039/C3TA12367G.
  123. Cabane E, Zhang X, Langowska K, Palivan C, Meier W. Stimuli-responsive polymers and their applications in nanomedicine. Biointerphases, 7, 1 (2012). http://dx.doi.org/10.1007/s13758-011-0009-3.
  124. Kulinich SA, Farzaneh M. How wetting hysteresis influences ice adhesion strength on superhydrophobic surfaces. Langmuir, 25, 8854 (2009). http://dx.doi.org/10.1021/la901439c.
  125. Meng LY, Park SJ. Effect of fluorination of carbon nanotubes on superhydrophobic properties of fluoro-based films. J Colloid Interface Sci, 342, 559 (2010). http://dx.doi.org/10.1016/j.jcis.2009.10.022.
  126. Han JT, Kim SY, Woo JS, Lee GW. Transparent, conductive, and superhydrophobic films from stabilized carbon nanotube/silane sol mixture solution. Adv Mater, 20, 3724 (2008). http://dx.doi.org/10.1002/adma.200800239.
  127. Meng LY, Park SJ. Improvement of superhydrophobicity of multi-walled CNTs produced by fluorination. Carbon Lett, 13, 178 (2012). http://dx.doi.org/10.5714/CL.2012.13.3.178.
  128. Tang Y, Gou J, Hu Y. Covalent functionalization of carbon nanotubes with polyhedral oligomeric silsequioxane for superhydrophobicity and flame retardancy. Polym Eng Sci, 53, 1021 (2013). http://dx.doi.org/10.1002/pen.23338.
  129. Lee GH, Cooper RC, An SJ, Lee S, van der Zande A, Petrone N, Hammerberg AG, Lee C, Crawford B, Oliver W, Kysar JW, Hone J. High-strength chemical-vapor-deposited graphene and grain boundaries. Science, 340, 1073 (2013). http://dx.doi.org/10.1126/science.1235126.
  130. Ramos SC, Vasconcelos G, Antunes EF, Lobo AO, Trava-Airoldi VJ, Corat EJ. Total re-establishment of superhydrophobicity of vertically-aligned carbon nanotubes by $Co_2$ laser treatment. Surf Coat Technol, 204, 3073 (2010). http://dx.doi.org/10.1016/j.surfcoat.2010.02.065.
  131. Rafiee J, Rafiee MA, Yu ZZ, Koratkar N. Superhydrophobic to superhydrophilic wetting control in graphene films. Adv Mater, 22, 2151 (2010). http://dx.doi.org/10.1002/adma.200903696.
  132. Jin J, Wang X, Song M. Graphene-based nanostructured hybrid materials for conductive and superhydrophobic functional coatings. J Nanosci Nanotechnol, 11, 7715 (2011). http://dx.doi.org/10.1166/jnn.2011.4730.
  133. Lin Y, Ehlert GJ, Bukowsky C, Sodano HA. Superhydrophobic functionalized graphene aerogels. ACS Appl Mater Interfaces, 3, 2200 (2011). http://dx.doi.org/10.1021/am200527j.
  134. Wang S, Yang Y, Zhang Y, Fei X, Zhou C, Zhang Y, Li Y, Yang Q, Song Y. Fabrication of large-scale superhydrophobic composite films with enhanced tensile properties by multinozzle conveyor belt electrospinning. J Appl Polym Sci, 131, 39735 (2014). http://dx.doi.org/10.1002/app.39735.
  135. Zha DA, Mei S, Wang Z, Li H, Shi Z, Jin Z. Superhydrophobic polyvinylidene fluoride/graphene porous materials. Carbon, 49, 5166 (2011). http://dx.doi.org/10.1016/j.carbon.2011.07.032.
  136. Zhang L, Zha DA, Du T, Mei S, Shi Z, Jin Z. Formation of superhydrophobic microspheres of poly(vinylidene fluoride-hexafluoropropylene)/graphene composite via gelation. Langmuir, 27, 8943 (2011). http://dx.doi.org/10.1021/la200982n.
  137. Choi BG, Park HS. Superhydrophobic graphene/nafion nanohybrid films with hierarchical roughness. J Phys Chem C, 116, 3207 (2012). http://dx.doi.org/10.1021/jp207818b.
  138. Wang JN, Shao RQ, Zhang YL, Guo L, Jiang HB, Lu DX, Sun HB. Biomimetic graphene surfaces with superhydrophobicity and iridescence. Chemistry, 7, 301 (2012). http://dx.doi.org/10.1002/asia.201100882.
  139. Fan ZL, Qin XJ, Sun HX, Zhu ZQ, Pei CJ, Liang WD, Bao XM, An J, La PQ, Li A, Deng WQ. Superhydrophobic mesoporous graphene for separation and absorption. ChemPlusChem, 78, 1282 (2013). http://dx.doi.org/10.1002/cplu.201300119.
  140. Li X, Li L, Wang Y, Li H, Bian X. Wetting and interfacial properties of water on the defective graphene. J Phys Chem C, 117, 14106 (2013). http://dx.doi.org/10.1021/jp4045258.
  141. Shanmugharaj AM, Yoon JH, Yang WJ, Ryu SH. Synthesis, characterization, and surface wettability properties of amine functionalized graphene oxide films with varying amine chain lengths. J Colloid Interface Sci, 401, 148 (2013). http://dx.doi.org/10.1016/j.jcis.2013.02.054.
  142. Shateri-Khalilabad M, Yazdanshenas M. Preparation of superhydrophobic electroconductive graphene-coated cotton cellulose. Cellulose, 20, 963 (2013). http://dx.doi.org/10.1007/s10570-013-9873-y.
  143. Singh E, Chen Z, Houshmand F, Ren W, Peles Y, Cheng HM, Koratkar N. Superhydrophobic graphene foams. Small, 9, 75 (2013). http://dx.doi.org/10.1002/smll.201201176.
  144. Wang P, Zhang D. Super-hydrophobic film prepared with reduced graphene sheets and its application as corrosion barrier to copper. Appl Mech Mater, 365-366, 1100 (2013). http://dx.doi.org/10.4028/www.scientific.net/AMM.365-366.1100.
  145. Li X, Feng F, Zhang K, Ye S, Kwok DY, Birss V. Wettability of Nafion and Nafion/Vulcan carbon composite films. Langmuir, 28, 6698 (2012). http://dx.doi.org/10.1021/la300388x.
  146. Banerjee D, Das NS, Chattopadhyay KK. Enhancement of field emission and hydrophobic properties of silicon nanowires by chemical vapor deposited carbon nanoflakes coating. Appl Surf Sci, 261, 223 (2012). http://dx.doi.org/10.1016/j.apsusc.2012.07.148.
  147. Sun H, Li A, Zhu Z, Liang W, Zhao X, La P, Deng W. Superhydrophobic activated carbon-coated sponges for separation and absorption. ChemSusChem, 6, 1057 (2013). http://dx.doi.org/10.1002/cssc.201200979.

Cited by

  1. Solvothermal synthesis of superhydrophobic hollow carbon nanoparticles from a fluorinated alcohol vol.7, pp.38, 2015, https://doi.org/10.1039/C5NR03484A
  2. Anomalous water expulsion from carbon-based rods at high humidity vol.11, pp.9, 2016, https://doi.org/10.1038/nnano.2016.91
  3. Copper catalysts supported on ordered and disordered silica–carbon composites for NOX elimination vol.118, pp.1, 2016, https://doi.org/10.1007/s11144-016-0996-7
  4. A review: synthesis and applications of graphene/chitosan nanocomposites vol.17, pp.1, 2016, https://doi.org/10.5714/CL.2016.17.1.011
  5. capture vol.17, pp.1, 2016, https://doi.org/10.5714/CL.2016.17.1.085
  6. Facile synthesis of BaTiO3 on multiwalled carbon nanotubes as a synergistic microwave absorber vol.27, pp.4, 2016, https://doi.org/10.1007/s10854-015-4171-0
  7. Nanoparticles/Polystyrene Nano-Composite Coating vol.37, pp.4, 2016, https://doi.org/10.1002/bkcs.10718
  8. Carbon materials as oil sorbents: a review on the synthesis and performance vol.4, pp.5, 2016, https://doi.org/10.1039/C5TA08321D
  9. Superhydrophobic Fabrics for Oil/Water Separation Based on the Metal-Organic Charge-Transfer Complex CuTCNAQ vol.81, pp.4, 2016, https://doi.org/10.1002/cplu.201600021
  10. Carbon nanotubes in microfluidic lab-on-a-chip technology: current trends and future perspectives vol.21, pp.9, 2017, https://doi.org/10.1007/s10404-017-1989-1
  11. ‘Click’ polymer of carbon nanotubes for superhydrophobic glass and leather vol.5, pp.2, 2017, https://doi.org/10.1680/jgrma.17.00001
  12. Wetting behaviors and applications of metal-catalyzed CVD grown graphene vol.6, pp.45, 2018, https://doi.org/10.1039/C8TA08325H
  13. Influence of the Type of Catalysts on the Formation of a Superhydrophobic Carbon Nanomaterial in Hydrocarbon Flames vol.91, pp.3, 2018, https://doi.org/10.1007/s10891-018-1800-5
  14. Comparison of the benzene sorption properties of metal organic frameworks: influence of the textural properties pp.2050-7895, 2019, https://doi.org/10.1039/C8EM00481A