DOI QR코드

DOI QR Code

Effect of Pretreatment Method on Lipid Extraction from Enteromorpha intestinalis

해조류 파래로부터 지질 추출에 미치는 전처리 방법의 영향

  • Jeong, Gwi-Taek (Department of Biotechnology, Pukyong National University) ;
  • Park, Don-Hee (Department of Biotechnology and Bioengineering, Chonnam National University)
  • Received : 2013.11.21
  • Accepted : 2013.12.30
  • Published : 2014.02.27

Abstract

In this study, we investigate the effect of pretreatment method on lipid extraction from Enteromorpha intestinalis using physical, thermo-chemical, and enzymatic process such as ultrasonication, high temperature treatment, freezing, microwave irradiation, osmotic shock, pH shock, homogenizing, and enzymatic treatment. In pretreatment with separated lipid extraction, the high extraction yield was obtained by high temperature treatment ($121^{\circ}C$ for 5 min) with 0.1 N HCl, which is 1.4 times higher than that of control. In pretreatment with direct lipid extraction, the high extraction yields were obtained by 0.1 N HCl pretreatment, microwave irradiation (700W, 1 min with twice), and 10% NaCl pretreatment, which is 1.45 times higher than that of control. In the result of enzymatic pretreatment with 17 kinds of enzymes, Cellic CTec II showed the high extraction yield of 5.3%, and which is 1.9 times higher than that of control. Moreover, the extraction yield was increased by the increase of enzyme amounts. In 10% enzyme amount, about 5.8% yield was obtained.

Keywords

References

  1. Jeong, G. T. and D. H. Park (2011) Production of levulinic acid from marine algae Codium fragile using acid-hydrolysis and response surface methodology. KSBB J. 26: 341-346. https://doi.org/10.7841/ksbbj.2011.26.4.341
  2. Jeong, G. T. and D. H. Park (2010) Production of sugars and levulinic acid from marine biomass Gelidium amansii. Appl. Biochem. Biotechnol. 161: 41-52. https://doi.org/10.1007/s12010-009-8795-5
  3. Jang, J. S., Y. Cho, G. T. Jeong, and S. K. Kim (2012) Optimization of saccharification and ethanol production by simultaneous saccharification and fermentation (SSF) from seaweed, Saccharina japonica. Bioprocess Biosyst. Eng. 35: 11-18. https://doi.org/10.1007/s00449-011-0611-2
  4. Meinita, M. D. N., Y. K. Hong, and G. T. Jeong (2012) Comparison of sulfuric and hydrochloric acids as catalysts in hydrolysis of Kappaphycus alvarezii (cottonii). Bioprocess Biosyst. Eng. 35: 123-128. https://doi.org/10.1007/s00449-011-0609-9
  5. Park, D. H. and G. T. Jeong (2013) Production of reducing sugar from macroalgae Saccharina japonica using ionic liquid catalyst. Korean Chem. Eng. Res. 51: 106-110. https://doi.org/10.9713/kcer.2013.51.1.106
  6. Kumari, P., C. R. K. Reddy, and B. Jha (2011) Comparative evaluation and selection of a method for lipid and fatty acid extraction from macroalgae. Anal. Biochem. 415: 134-144. https://doi.org/10.1016/j.ab.2011.04.010
  7. Chandini, S. K., P. Ganesan, P. V. Suresh, and N. Bhaskar (2008) Seaweeds as source of nutritionally beneficial compounds - A review. J. Food Sci. Technol. 45: 1-13.
  8. Kumari, P., M. Kumar, V. Gupta, C. R. K. Reddy, and B. Jha (2010) Tropical marine macroalgae as potential sources of nutritionally important PUFAs. Food Chem. 120: 749-757. https://doi.org/10.1016/j.foodchem.2009.11.006
  9. Han, Y. B. (2010) Edible Seaweed II - Components and biological activity. pp. 262-269. Korea University Pres, Korea.
  10. Lee, Y. P. (2008) Seaweed in Jeju, Academic Press.
  11. Kwak, C. S., S. A. Kim, and M. S. Lee (2005) The correlation of antioxidative effects of 5 Korean common edible seaweeds and total polyphenol content. J. Korean Soc. Food Sci. Nutr. 34: 1143-1150. https://doi.org/10.3746/jkfn.2005.34.8.1143
  12. Kim, S. A., J. Kim, M. K. Woo, C. S. Kwak, and M. S. Lee (2005) Antimutagenic and cytotoxic effects of ethanol extracts from five kinds of seaweeds. J. Korean Soc. Food Sci. Nutr. 34: 451-459. https://doi.org/10.3746/jkfn.2005.34.4.451
  13. Park, J. H., K. C. Kang, S. B. Baek, Y. H. Lee, and K. S. Rhee (1991) Separation of antioxidant compounds from edible marine algae. Korean J. Food Sci. Technol. 23: 256-261.
  14. Lee, H. O., D. S. Kim, J. R. Do, and Y. S. Ko (1999) Angiotensin-I converting enzyme inhibitory activity of algae. J. Korean Fish. Soc. 32: 427-431.
  15. Choi, J. S., J. H. Lee, and J. H. Jung (1997) The screening of nitrite scavenging effect of marine, algae and active principles of Ecklonia Stolonifera. J. Korean Fish. Soc. 30: 909-915.
  16. Song, B. B., S. K. Kim, and G. T. Jeong (2011) Enzymatic hydrolysis of marine algae Hizikia fusiforme. KSBB J. 26: 347-351. https://doi.org/10.7841/ksbbj.2011.26.4.347
  17. Lee, S. M., J. H. Kim, H. Y. Cho, H. Joo, and J. H. Lee (2009) Production of bio-ethanol from brown algae by physicochemical hydrolysis. J. Korean Ind. Eng. Chem. 20: 517-521.
  18. Kim. C. (2010) Saccharification of Gelidium amansii by acid hydrolysis to generate mixed sugars. M.S. Thesis. Kyung Hee University, Seoul, Korea.
  19. Choi, D., H. S. Sim, Y. L. Piao, W. Ying, and H. Cho (2009) Sugar production from raw seaweed using the enzyme method. J. Ind. Eng. Chem. 15: 12-15. https://doi.org/10.1016/j.jiec.2008.08.004
  20. Yeon, J. H., H. B. Seo, S. H. Oh, W. S. Choi, D. H. Kang, H. Y. Lee, and K. H. Jung (2010) Bioethanol production from hydrolysate of seaweed Sargassum sagamianum. KSBB J. 25: 283-288.
  21. Kim, J. K. (2010) Pretreatment and enzymatic hydrolysis of Ulva pertusa Kjellman. M.S, Thesis. Inha University, Incheon, Korea.
  22. Kang, K. Y., D. H. Park, and G. T. Jeong (2013) Effects of inorganic salts on pretreatment of Miscanthus straw. Biores. Technol. 132: 160-165. https://doi.org/10.1016/j.biortech.2013.01.012
  23. Lee, J. Y., C. Yoo, S. Y. Jun, C. Y. Ahn, and H. M. Oh (2010) Comparison of several methods for effective lipid extraction from microalgae. Biores. Technol. 101: S75-S77. https://doi.org/10.1016/j.biortech.2009.03.058
  24. Suganya, T., N. N. Gandhi, and S. Renganthan (2013) Production of algal biodiesel from marine macroalgae Enteromorpha compressa by two step process: Optimization and kinetic study. Biores. Technol. 128: 392-400. https://doi.org/10.1016/j.biortech.2012.10.068
  25. Prabakaran, P. and A. D. Ravindran (2011) A comparative study on effective cell distruption methods for lipid extraction from microalgae. Lett. Appl. Microbiol. 53: 150-154 https://doi.org/10.1111/j.1472-765X.2011.03082.x
  26. Gonzalez-Fernandez, C., B. Sialve, N. Bernet, and J. P. Steyer (2012) Comparison of ultrasound and thermal pretreatment of Scenedesmus biomass on methane production. Biores. Technol. 110: 610-616. https://doi.org/10.1016/j.biortech.2012.01.043

Cited by

  1. Effect of Reaction Factors on Reducing Sugar Production from Enteromorpha intestinalis Using Solid Acid Catalyst vol.53, pp.4, 2015, https://doi.org/10.9713/kcer.2015.53.4.478
  2. Optimum Reaction Condition of Enzymatic Hydrolysis for Production of Reducing Sugar from Enteromorpha intestinalis vol.30, pp.2, 2015, https://doi.org/10.7841/ksbbj.2015.30.2.53
  3. Eucheuma cottonii로부터 산 가수분해를 통한 biosugar 생산 vol.44, pp.1, 2016, https://doi.org/10.4014/mbl.1512.12006