DOI QR코드

DOI QR Code

Effect of Hollow Composite Yarn Characteristics to the Comfort Property of Fabrics for High Emotional Garment

중공 복합사 특성이 고감성 의류용 직물의 쾌적성에 미치는 영향

  • 김현아 (한국패션산업연구원 연구개발본부)
  • Received : 2014.11.17
  • Accepted : 2014.12.08
  • Published : 2014.12.31

Abstract

Composite draw textured yarns(DTY) and air jet textured yarns(ATY) with hollow PET filament have been used for making high emotional fabrics including light weight sports wear garments. This study investigated effect of hollow composite yarns and fabric structural parameters to the comfort properties related to the moisture and thermal transport phenomena for the composite fabrics made of DTY and ATY with hollow PET filament. Wicking property of hollow composite fabric was superior at the high pore size fabric and was not influenced by fabric cover factor. Wicking property of the fabric with ATY was better than that of the fabric with DTY. On the other hand, drying rate of fine pore sized fabric was shorter than that of large pore sized fabric and drying rate of high multi yarn fabric with low cover factor and small pore size was superior than that of hollow composite fabric. The pore size of the fabric was dominant factor in the air permeability and thermal conductivity of hollow composite fabric. High pore sized fabric showed high air permeability and thermal conductivity of hollow composite fabric was nonlinearly inversely proportional to pore size of the fabric.

PET 중공필라멘트 복합 DTY(Draw Textured Yarns)와 ATY(Air-jet Textured Yarns)는 경량의 스포츠 의류를 포함한 고감성 의류용으로 많이 사용되고 있다. 본 연구는 중공섬유 복합 DTY와 ATY 복합사 직물의 수분 및 열이동에 관계되는 쾌적특성에 중공 복합사 및 직물의 구조 특성이 어떠한 영향을 미치는 가에 대한 분석이다. 기공의 크기가 큰 중공 복합 직물의 흡수성이 우수하였고 커버팩터는 영향을 미치지 않았다. 또한 ATY사 직물이 DTY사 직물에 비해 흡수성이 우수하였다. 반면, 건조특성은 기공 사이즈가 미세한 직물이 기공사이즈가 큰 직물보다 건조시간이 짧았으며 낮은 커버팩터와 기공 사이즈가 작은 하이멀티사 직물이 중공 복합직물에 비해 건조 특성이 우수하였다. 직물의 기공 사이즈는 공기투과도와 열전도도 특성에 가장 중요한 인자였다. 직물의 큰 기공도는 중공 복합 직물의 기공도와 열전도도에 비선형적인 반비례 상관관계를 나타냈다.

Keywords

References

  1. Acar, M., & Wray, G. R. (1986). An analysis of the air-jet yarn-texturing process part : The effect of wetting the yarns, Journal of The Textile Institute, 77(6), 359-370. https://doi.org/10.1080/00405008608658432
  2. Cubric, I. S., Skenderi, Z., & Havenith, G. (2013). Impact of raw material, yarn and fabric parameters, and finishing on water vapor resistance, Textile research journal, 83(12), 1215-1228. https://doi.org/10.1177/0040517512471745
  3. Clulow, E. E. (1987). The assessment of comfort. J. Text. Inst., 78(4), 322-323. https://doi.org/10.1080/00405008708658258
  4. Eskin, B., Ucar, N., & Demir, A. (2011). Water vaporabsortion properties of a novel filament composed of maleic anhydride polypropylene, polypropylene and super absorbent polymer, Textile research journal, 81(14), 1503-1509. https://doi.org/10.1177/0040517510392465
  5. Khoddami, A., Carr, C. M., & Gong, H. (2009a). Effect of hollow polyester fibres on mechanical properties of knitted wool/polyester fabrics, Fibers and polymers, 10(4), 452-460. https://doi.org/10.1007/s12221-009-0452-7
  6. Khoddami, A., Soleimani, M., & Gong, H. (2011b). Effect of finishing on the mechanical and thermal properties of fabrics from wool and hollow polyester fibres, Textile research journal, 81(19), 2006-2016. https://doi.org/10.1177/0040517511407381
  7. Matsudaira, M., & Kondo, Y. (1996). The effect of a grooved hollow fibre on fabric moisture-and heat-transport properties. J. Text. Inst., 87(3), 409-416. https://doi.org/10.1080/00405009608631342
  8. McGregor, B. A., & Naebe, M. (2013). Effect of fibre, yarn and knitted fabric attributes associated with wool comfort properties. J. Text. Inst., 104(6), 606-617. https://doi.org/10.1080/00405000.2013.770596
  9. Naebe, M., Lutz, V., McGregor, B. A., Tester, D., & Wang, X. (2013). Effect of surface treatment and knit structure on comfort properties of wool fabrics. J. Text. Inst., 104(6), 600-605. https://doi.org/10.1080/00405000.2012.752125
  10. Sztandera, L. M., Cardello, A. V., Winterhalter, C., & Schutz, H. (2013). Identification of the most significant comfort factors for textiles from processing mechanical, hand feel, fabric construction, and perceived tactile comfort data. Textile research journal, 83(1), 34-41. https://doi.org/10.1177/0040517512438121
  11. Tashkandi, S., Wang, L., & Kanesalingam, S. (2013). An investigation of thermal comfort properties of Abaya woven fabrics. J. Text. Inst., 104(8), 830-837. https://doi.org/10.1080/00405000.2012.758351
  12. Varshney, R. K., Kothari, V. K., & Dhamija, S. (2010). A study on thermophysiological comfort properties of fabrics in relation to constituent fibre fineness and cross-sectional shapes. J. Text. Inst., 101(6), 495-505. https://doi.org/10.1080/00405000802542184