DOI QR코드

DOI QR Code

Optimization Study for Pressure Swing Distillation Process for the Mixture of Isobutyl-Acetate and Isobutyl-Alcohol System

Isobutyl-Acetate와 Isobutyl-Alcohol 이성분계의 압력변환증류 공정 최적화 연구

  • Cho, Sung Jin (Department of Chemical & Biochemical Engineering, Dongguk University) ;
  • Shin, Jae Sun (Department of Chemical & Biochemical Engineering, Dongguk University) ;
  • Choi, Suk Hoon (Department of Chemical & Biochemical Engineering, Dongguk University) ;
  • Lee, Euy Soo (Department of Chemical & Biochemical Engineering, Dongguk University) ;
  • Park, Sang Jin (Department of Chemical & Biochemical Engineering, Dongguk University)
  • 조성진 (동국대학교 화공생물공학과) ;
  • 신재선 (동국대학교 화공생물공학과) ;
  • 최석훈 (동국대학교 화공생물공학과) ;
  • 이의수 (동국대학교 화공생물공학과) ;
  • 박상진 (동국대학교 화공생물공학과)
  • Received : 2013.12.26
  • Accepted : 2014.01.24
  • Published : 2014.06.01

Abstract

In this study, an optimization process design has been performed to separate 99.9 mol% of Isobutyl Acetate from binary azeotropic mixture of Isobutyl Acetate and Isobutyl Alcohol system using a Pressure Swing Distillation (PSD). PSD is used to separate binary azeotropic mixtures using the difference between the relative volatilities and azeotropic compositions by changing the system pressure. Non-Random Two Liquid (NRTL) model for liquid phase and the Peng-Robinson equation for vapor phase are used. An optimization study for the reflux ratio and feed stage locations which minimize the total reboiler heat duties are studied. Since PSD process consists of two columns, i.e. high pressure and low pressure, the effect of column sequence on the optimum conditions is reported.

본 연구에서는 Isobutyl Acetate와 Isobutyl Alcohol의 공비혼합물을 압력변환증류공정(PSD; Pressure Swing Distillation Process)을 이용하여 99.9 mol% 이상의 Isobutyl Acetate를 분리하는 공정모사를 수행하였다. 압력변환증류공정은 공비혼합물의 상대휘발도와 공비조성이 압력의 변화에 따라 차이가 나는 특성을 이용한 공정이다. 액상에서는 Non-Random Two Liquid (NRTL) model을 그리고 기상에서는 Peng-Robinson equation을 이용하였다. 최적화 방법으로 환류비와 주입단 위치를 변수로 두고 총 재비기 소요 열량을 최소화시키는 목적으로 최적화를 수행하였다. 압력변환 증류공정은 두 개의 증류탑을 필요로 함에 따라 고압 증류탑과 저압 증류탑의 배열에 따른 최적화 조건 또한 비교를 수행하였다.

Keywords

References

  1. Song, J. S., Kang, T. I. and Park, S. J., "Phase Behavior of IPAWater-Entrainer and Process Design on IPA Azeotropic Distillation Process," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 38(5), 633-638(2000).
  2. Cho, J. H., Park, J. K. and Jeon, J. K., "Comparison of Threeand Two-Column Configurations in Ethanol Dehydration Using Azeotropic Distillation," J. Ind. Eng. Chem., 12(2), 206-215(2006).
  3. Cho, J. H. and Jeon, J. K., "Optimization Study on the Azeotropic Distillation Process for Isopropyl Alcohol Dehydration," Korean J. Chem. Eng., 23(1), 1-7(2006). https://doi.org/10.1007/BF02705684
  4. Kim, J. H., Lee, D. H., Hong, S. K. and Park, S. J., "Process Design of Low Energy Azeotropic and Extractive Distillation Process for Bioethanol Recovery," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 46(2), 348-355(2008).
  5. Roscoe, H. E. and William, D., "XV.-On the Absorption of Hydrochloric Acid and Ammonia in Water," Q. J. Chem. Soc., 12(1), 128-151(1860). https://doi.org/10.1039/qj8601200128
  6. Roscoe, H. E., "XVIII.-On the Composition of the Aqueous Acids of Constant Boiling Point," Q. J. Chem. Soc., 13(2), 146-164(1861). https://doi.org/10.1039/qj8611300146
  7. Lewis, W. K., "Dehydrating Alcohol and the Like," U. S. Patent, 1676700(1928).
  8. Knapp, J. P. and Doherty, M. F., "A New Pressure-Swing-Distillation Process for Separating Homogeneous Azeotropic Mixtures," Ind. Eng. Chem. Res., 31(1), 346-357(1992). https://doi.org/10.1021/ie00001a047
  9. Phimister, J. R. and Seider, W. D., "Semicontinuous, Pressure-Swing Distillation," Ind. Eng. Chem. Res., 39(1), 122-130(2000). https://doi.org/10.1021/ie9904302
  10. Luyben, W. L., "Comparison of Pressure-Swing and Extractive-Distillation Methods for Methanol-Recovery Systems in the TAME Reactive-Distillation Process," Ind. Eng. Chem. Res., 44(15), 5715-5725(2005). https://doi.org/10.1021/ie058006q
  11. Luyben, W. L., "Comparison of Extractive Distillation and Pressure-Swing Distillation for Acetone-Methanol Separation," Ind. Eng. Chem. Res., 47(8), 2696-2707(2008). https://doi.org/10.1021/ie701695u
  12. Luyben, W. L., "Design and Control of a Fully Heat-Integrated Pressure-Swing Azeotropic Distillation System," Ind. Eng. Chem. Res., 47(8), 2681-2695(2008). https://doi.org/10.1021/ie071366o
  13. Repke, J.-U., Klein, A., Bogle, D. and Wozny, G., "Pressure Swing Batch Distillation for Homogeneous Azeotropic Separation," Chem. Eng. Res. Des., 85(4), 492-501(2007). https://doi.org/10.1205/cherd06092
  14. Modla, G. and Lang, P., "Feasibility of New Pressure Swing Batch Distillation Methods," Chem. Eng. Sci., 63(11), 2856-2874 (2008). https://doi.org/10.1016/j.ces.2008.02.034
  15. Modla, G. and Lang, P., "Separation of an Acetone-Methanol Mixture by Pressure-Swing Batch Distillation in a Double-Column System with and without Thermal Integration," Ind. Eng. Chem. Res., 49(8), 3785-3793(2010). https://doi.org/10.1021/ie9019352
  16. Modla, G., Lang, P. and Denes, F., "Feasibility of Separation of Ternary Mixtures by Pressure Swing Batch Distillation," Chem. Eng. Sci., 65(2), 870-881(2010). https://doi.org/10.1016/j.ces.2009.09.037
  17. Klein, A. and Repke, J.-U., "Regular and Inverted Batch Process Structures for Pressure Swing Distillation: A Case Study," Asia-Pac. J. Chem. Eng., 4(6), 893-897(2009). https://doi.org/10.1002/apj.344
  18. Lee, J. H., Cho, J. H., Kim, D. M. and Park, S. J., "Separation of Tetrahydrofuran and Water Using Pressure Swing Distillation: Modeling and Optimization," Korean J. Chem. Eng., 28(2), 591-596(2011). https://doi.org/10.1007/s11814-010-0467-1
  19. Peng, D. Y. and Robinson, D. B., "A New Two-Constant Equation of State," Ind. Eng. Chem. Fundamen., 15(1), 59-64(1976). https://doi.org/10.1021/i160057a011
  20. Renon, H. and Prausnitz, J. M., "Local Compositions in Thermodynamic Excess Functions for Liquid Mixtures," AIChE J., 14(1), 135-144(1968). https://doi.org/10.1002/aic.690140124
  21. Monton, J. B., Munoz, R., Burguet, M. C. and Torre, J. de la, "Isobaric Vapor-liquid Equilibria for the Binary Systems Isobutyl Alcohol + Isobutyl Acetate and Tert-butyl Alcohol + Tert-butyl Acetate at 20 and 101.3 kPa," Fluid Phase Equilib., 227(1), 19-25(2005). https://doi.org/10.1016/j.fluid.2004.10.022
  22. Kim, K. W., Shin, J. S., Kim, S. H., Hong, S. K., Cho, J. H. and Park, S. J., "A Computational Study on the Separation of Acetonitrile and Water Azeotropic Mixture Using Pressure Swing Distillation," J. Chem. Eng. Jap., 46(5), 347-352(2013). https://doi.org/10.1252/jcej.12we252
  23. Repke, J.-U., Forner, F. and Klein, A., "Separation of Homogeneous Azeotropic Mixtures by Pressure Swing Distillation-Analysis of the Operation Performance," Chem. Eng. Technol., 28(10), 1151-1158(2005). https://doi.org/10.1002/ceat.200500232

Cited by

  1. The Measurement and Prediction of Combustible Properties of Dimethylacetamide (DMAc) vol.53, pp.5, 2015, https://doi.org/10.9713/kcer.2015.53.5.553
  2. 큐멘(Cumene)의 연소특성치의 측정 및 예측 vol.54, pp.4, 2016, https://doi.org/10.9713/kcer.2016.54.4.465
  3. MSDS (Material Safety Data Sheet)를 위한 벤질알코올 연소특성치의 측정 및 예측 vol.55, pp.2, 2017, https://doi.org/10.9713/kcer.2017.55.2.190
  4. n-Pentanol p-Xylene 과 혼합물의 최소자연발화온도와 발화지연시간의 측정 및 예측 vol.31, pp.5, 2014, https://doi.org/10.7731/kifse.2017.31.5.001
  5. 노말에틸아닐린의 화재 및 폭발 특성치의 측정 및 예측 vol.56, pp.4, 2018, https://doi.org/10.9713/kcer.2018.56.4.474