DOI QR코드

DOI QR Code

Characteristics of Flux Decline in Forward Osmosis Process for Asymmetric Cellulose Membrane

정삼투 공정에 있어 비대칭 셀룰로오즈 막의 투과유속 감소특성

  • Received : 2013.12.05
  • Accepted : 2014.03.03
  • Published : 2014.06.01

Abstract

This study examined the effect of concentration polarization on permeate flux in forward osmosis (FO) membrane process for saline and sucrose solution. The reduction in permeate flux during the FO membrane process is largely due to the formation of concentration polarization on membrane surfaces. The flux reduction due to internal concentration polarization formed on the porous support layer was larger than that due to the external concentration polarization on the active membrane surface. Water permeate flux through the FO membrane increased nonlinearly with the increase in osmotic pressure. The water permeability coefficient was $1.8081{\times}10^{-7}m/s{\cdot}atm$ for draw solution on active layer (DS-AL) mode and $1.0957{\times}10^{-7}m/s{\cdot}atm$ for draw solution on support layer (DS-SL) mode in NaCl solution system. The corresponding membrane resistance was $5.5306{\times}10^6$ and $9.1266{\times}10^6s{\cdot}atm/m$, respectively. With respect to the sucrose solution, the permeate flux for DS-AL mode was 1.33~1.90 times higher than that for DS-SL mode. The corresponding variation in the permeation flux (J) due to osmotic pressure (${\pi}$) would be expressed as $J=-0.0177+0.4506{\pi}-0.0032{\pi}^2$ for the forward and $J=0.0948+0.3292{\pi}-0.0037{\pi}^2$ for the latter.

정삼투막 공정을 이용한 소금 및 수크로오스 용액의 처리에서 농도분극현상이 투과유속에 미치는 영향을 검토하였다. 정삼투 공정에서 투과 유속감소는 주로 분리막 표면에서의 농도분극에 기인하며, 분리막의 지지층에서 발생한 내부농도분극에 의한 투과유속 감속이 활성층에서 발생한 외부농도분극에 의한 것 보다 더 컸다. 순수 투과유속은 삼투압이 증가함에 따라 비선형적으로 증가하였다. NaCl 용액의 활성층 배향(DS-AL)에서의 수 투과계수는 $1.8081{\times}10^{-7}m/s{\cdot}atm$, 지지층 배향(DS-SL)의 경우 $1.0957{\times}10^{-7}m/s{\cdot}atm$ 이었으며, 이로부터 산출된 막저항은 각각 $5.5306{\times}10^6s{\cdot}atm/m$, $9.1266{\times}10^6s{\cdot}atm/m$ 이었다. 수크로오스 용액의 경우 활성층 배향(DS-AL)에서의 투과유속이 지지층 배향(DS-SAL)에서의 투과유속보다 1.33~1.90배 크게 나타났다. 삼투압(${\pi}$)에 대한 투과유속(J)의 변화는 전자의 경우 $J=-0.0177+0.4506{\pi}-0.0032{\pi}^2$, 후자의 경우 $J=0.0948+0.3292{\pi}-0.0037{\pi}^2$으로 표현될 수 있었다.

Keywords

References

  1. Clever, M., Jordt, F., Knauf, R., Rabiger, N., Rtidebusch, M. and Hilker, R., "Process Water Production from River Water by Ultrafiltration and Reverse Osmosis," Desalination, 131, 325-336(2000). https://doi.org/10.1016/S0011-9164(00)90031-6
  2. Kraume, M., Blacklow, U., Vocks, M. and Drews, A., "Nutrients Removal in MBRs for Municipal Waste Water Treatment," Wat. Sci. Tech., 51, 391-402(2005).
  3. Raluy, G., Serra, L. and Uche, J., "Life Cycle Assessment of MSF, MED and RO Desalination Technologies," Energy, 31, 2361-2372 (2006). https://doi.org/10.1016/j.energy.2006.02.005
  4. Madaeni, S. S., Rahimi, M. and Abolhasani, M., "Investigation of Cake Deposition on Various Parts of the Surface of Microfiltration Membrane Due to Fouling," Korean J. Chem. Eng., 27(1), 206-213(2010). https://doi.org/10.2478/s11814-009-0299-z
  5. Cath, T. Y., Childress, A. E. and Elimelech, M., "Forward Osmosis: Principles, Applications and Recent Developments," J. Membr. Sci., 281, 70-87(2006). https://doi.org/10.1016/j.memsci.2006.05.048
  6. Lee, S., Boo, C., Elimelech, M. and Hong, S., "Comparison of Fouling Behavior in Forward Osmosis (FO) and Reverse Osmosis (RO)," J. Membr. Sci., 365, 34-39(2010). https://doi.org/10.1016/j.memsci.2010.08.036
  7. Phillip, W. A., Yong, J. S. and Elimelech, M., "Reverse Draw Solute Permeation in Forward Osmosis : Modeling and Experiments," Environ. Sci. Technol., 44, 5170-5176(2010). https://doi.org/10.1021/es100901n
  8. Wang, R., Shi, L., Tang, C. Y., Chou, S., Qiu, C. and Fane, A. G., "Characterization of Novel Forward Osmosis Hollow Fiber Membranes," J. Membr. Sci., 355, 158-167(2010). https://doi.org/10.1016/j.memsci.2010.03.017
  9. Kim, Y. et al., "Performance Evaluation of Absorbent Solution for Draw Solute Recovery in Forward Osmosis Desalination Process," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 51(2), 240-244(2013). https://doi.org/10.9713/kcer.2013.51.2.240
  10. McCutcheon, J. R., McGinnis, R. L. and Elimelech, M., "Desalination by Ammonia-carbon Dioxide Forward Osmosis: Influence of Draw and Feed Solution Concentrations on Process Performance," J. Membr. Sci., 278, 114-123(2006). https://doi.org/10.1016/j.memsci.2005.10.048
  11. McCutcheon, J. R., McGinnis, R. L. and Elimelech, M., "A Novel Ammonia-carbon Dioxide Forward (direct) Osmosis Desalination Process," Desalination, 174, 1-11(2005). https://doi.org/10.1016/j.desal.2004.11.002
  12. Gray, G. T., McCutcheon, J. R. and Elimelech, M., "Internal Concentration Polarization in Forward Osmosis: Role of Membrane Orientation," Desalination, 197, 1-8(2006). https://doi.org/10.1016/j.desal.2006.02.003
  13. McCutcheon, J. R. and Elimelec, M., "Modeling Water Flux in Forward Osmosis: Implications for Improved Membrane Design," AIChE J., 53, 1736-1744(2007). https://doi.org/10.1002/aic.11197
  14. McCutcheon, J. R. and Elimelech, M., "Influence of Concentrative and Dilutive Internal Concentration Polarization on Flux Behavior in Forward Osmosis," J. Membr. Sci., 284, 237-247(2006). https://doi.org/10.1016/j.memsci.2006.07.049
  15. Sablani, S. S., Goosen, M. F. A., Al-Belushi, R. and Wilf, M., "Concentration Polarization in Ultrafiltrationand Reverse Osmosis: A Critical Review," Desalination, 141, 269-289(2001). https://doi.org/10.1016/S0011-9164(01)85005-0
  16. Jin, X., She, Q., Ang, X. and Tang, C. Y., "Removal of Boron and Arsenic by Forward Osmosis Membrane: Influence of Membrane Orientation and Organic Fouling," J. Membr. Sci., 289, 182-187 (2012).
  17. Victor, M. M. L., "Mutual Diffusion Coefficients in Aqueous Electrolyte Solutions," Pure Appl. Chem., 65, 2631-2640(1993).
  18. Siedel, A., Waypa, J. J. and Elimelec, M., "Role of change(Donnan) Exclusion in Removal of Arsenic from Water by a Negatively Charged Porous Nanofiltration Membrane," Environ. Eng. Sci., 18, 5-113(2001).

Cited by

  1. 친수성을 가지는 에틸셀룰로스-폴리에틸렌글리콜 가지형 고분자의 정삼투 복합막 지지층으로의 응용 vol.54, pp.4, 2014, https://doi.org/10.9713/kcer.2016.54.4.510