DOI QR코드

DOI QR Code

Synthesis of High Purity Nano-Silica Using Water Glass

물유리를 이용한 고순도 나노실리카 제조

  • Choi, Jin Seok (Department of Advanced Materials Science and Engineering, Kumoh National Institute of Technology) ;
  • Lee, Hyun-Kwuon (Department of Advanced Materials Science and Engineering, Kumoh National Institute of Technology) ;
  • An, Sung Jin (Department of Advanced Materials Science and Engineering, Kumoh National Institute of Technology)
  • 최진석 (금오공과대학교 신소재공학과) ;
  • 이현권 (금오공과대학교 신소재공학과) ;
  • 안성진 (금오공과대학교 신소재공학과)
  • Received : 2014.04.01
  • Accepted : 2014.04.22
  • Published : 2014.05.27

Abstract

Silica nano-powder (SNP) is an inorganic material able to provide high-performance in various fields because of its multiple functions. Methods used to synthesize high purity SNP, include crushing silica minerals, vapor reaction of silica chloride, and a sol-gel process using TEOS and sodium silicate solution. The sol-gel process is the cheapest method for synthesis of SNP, and was used in this study. First, we investigated the shape and the size of the silica-powder particles in relation to the variation of HCl and sodium silicate concentrations. After drying, the shape of nano-silica powder differed in relation to variations in the HCl concentration. As the pH of the solution increased, so did the density of crosslinking. Initially, there was NaCl in the SNP. To increase its purity, we adopted a washing process that included centrifugation and filtration. After washing, the last of the NaCl was removed using DI water, leaving only amorphous silica powder. The purity of nano-silica powder synthesized using sodium silicate was over 99.6%.

Keywords

References

  1. T. Matsuzawa, K. Mase and S. Inoue, J. Appl. Polymer Sci., 112(6), 3748 (2009). https://doi.org/10.1002/app.29770
  2. P. W. J. G. Wijnen, T. P. M. Beelen, K. P. J. Rummens, H. C. P. L. Saeijs and R. A. van Santen, J. Appl. Cryst., 24(5), 759 (1991). https://doi.org/10.1107/S0021889891000924
  3. S. W. UI, I. S. Choi and S. C. Choi, ISRN Mater. Sci., 2014(1), 6 (2014).
  4. L. G. A. van de Water and T. Maschmeyer, Top. Catal., 29(1-2), 67 (2004). https://doi.org/10.1023/B:TOCA.0000024929.79470.7f
  5. I. I. Slowing, B. G. Trewyn, S. Giri and V. S. Y. Lin, Adv. Funct. Mater., 17(8), 1225 (2007). https://doi.org/10.1002/adfm.200601191
  6. J. H. Clark, D. J. Macquarrie and K. Wilson, Stud. Surf. Sci. Catal., 129(36), 251 (2000). https://doi.org/10.1016/S0167-2991(00)80221-9
  7. E. Y. Choi, Y. B. Lee, D. W. Shin and K. H. Kim, Kor. J. Mater. Res.(in Korean), 12(11), 850 (2002). https://doi.org/10.3740/MRSK.2002.12.11.850
  8. C. Yamagata, D. R. Elias, M. R. S. Paiva, M. Misso and S. R. H. M. Castanho, J. Mater. Sci. Eng. B, 2(8), 429 (2012).
  9. C. J. Brinker and G. W. Scherer, Sol-Gel science: the physics and chemistry of sol-gel processing, p.103, Academic press,San Diego, CA (1990).
  10. C. J. Brinker, J. Non-Cryst. Solids, 100(1), 31 (1988). https://doi.org/10.1016/0022-3093(88)90005-1
  11. J. L. Gurav, I. K. Jung, H. H. Park, E. S. Kang and D. Y. Nadargi, J. Nanomater., 2010(1), 11 (2010).
  12. M. Cypryk and Y. Apeloig, Organometallics, 21(11), 2165 (2002). https://doi.org/10.1021/om011055s
  13. M. Helmich and F. Rauch, Glastechnische Berichte, 66(8), 195 (1993).
  14. S. W. Ui, S. J. Lim, S. H. Lee and S. C. Choi, J. Ceram. Process. Res., 10(4), 553 (2009).
  15. S. Music, N. F. Vincekovick and L. Sekovanic, Braz. J. Chem. Eng., 28(1) 38 (2011).

Cited by

  1. The Effect of pH on Synthesis of Nano-Silica Using Water Glass vol.25, pp.4, 2015, https://doi.org/10.3740/MRSK.2015.25.4.209