DOI QR코드

DOI QR Code

Distribution and Migration Characteristics of Explosive Compounds in Soil at Military Shooting Ranges in Gyeonggi Province

경기도 북부지역 군용 사격장 토양에 존재하는 화약물질 분포 및 이동 특성 조사

  • Bae, Bumhan (Department of Civil and Environmental Engineering, Gachon University) ;
  • Park, Jieun (Department of Civil and Environmental Engineering, Gachon University)
  • Received : 2014.02.12
  • Accepted : 2014.04.01
  • Published : 2014.06.01

Abstract

A remedial investigation was conducted at five military training ranges in northern Gyeonggi province to collect information necessary for the design of on-site treatment facilities for the abatement of explosive compounds release to the environment. These information includes (i) identification of dominant explosive compounds in each range, (ii) discharge/migration routes, and (iii) contaminant distribution in particle size fraction and settling velocity of the soils. The results of investigation showed that TNT and RDX are the major contaminants but the extent of contamination varied depending on the types of military training practices and topography of the site. RDX was also detected in the subsurface soil and in the nearby stream within the training ranges, suggesting release of contaminants to streams. The median concentrations of explosives in the surface soil were less than 20 mg/kg despite several 'hot spots' in which explosives concentrations often exceeds several hundred mg/kg. The average clay contents in the soil of target area was less than 5 % compared to 12 % in the control, indicating loss of smaller particles by surface runoff during rainfall due to lack of vegetative land cover. Analysis of explosive compounds and particle size distribution showed that the amount of explosive compounds in soil particles smaller than 0.075 mm was less than 10 % of the total. Settling column tests also revealed that the quantity of explosive compounds in the liquid phase of the effluent was greater than that in the solid phase. Therefore, pre-treatment of particulate matter in surface runoff of shooting range with a simple settling basin and subsequent effluent treatment with planted constructed wetlands as polishing stage for explosives in the aqueous phase would provide the shooting ranges with a self-standing, sustainable, green solution.

경기도 ${\bigcirc}{\bigcirc}$지역 군 사격장에서 환경으로 유출되는 화약물질 현장저감시설의 설계 자료 확보를 위해 토양오염조사를 실시하였다. 설계에 필요한 자료는 (i) 주 오염 화약물질 종류 파악, (ii) 배출/이동 경로, (iii) 토양 입경별 화약물질 농도조사 및 침강특성이다. 현장 조사 및 분석결과, TNT와 RDX가 사격장 토양에서의 주 오염물질이지만, 군 훈련 종류와 사격장 지형에 따라 오염도는 변화하였다. 화약물질은 표토이외의 심토와 인근 개울에서도 검출되어, 피탄지에서 하천으로의 유출이 있음을 확인하였다. 피탄지에 화약물질 농도가 높은 hot spot이 다수 존재하였으나, 전반적으로 오염농도가 20 mg/kg을 넘지는 않았다. 피탄지 토양 내 점토 함량은 대조군 12 %에 비해 현저히 낮은 5 % 미만이며, 이는 사격으로 인해 식피가 제거되어 강우 시 토사의 표면유출이 증가하였기 때문이라 판단된다. 토양 입경별 화약물질 분포 분석 결과, 토양 입경 0.075 mm 미만의 세립토에는 화약물질 총량의 약 10 % 이하만이 존재하였다. 침강관 실험결과, 유출수 내 액상으로 유출되는 화약물질량이 고상에 있는 화약물질량보다 많았다. 그러므로 사격장에서 표면 유출되는 강수 내 입자상 물질을 간단한 침전지로 처리하고, 다음으로 정화식물을 식재한 인공습지로 액상 내 화약물질을 처리하는 방안이 자립적이며 지속적으로 유지 가능한 녹색 정화방법이 될 것이다.

Keywords

References

  1. 한국수자원공사 (2002), 다락대 사격장내 토양오염 정밀조사를 통한 한탄강댐 수질예측 및 복원공법 연구. pp. 105-121. (in Korean).
  2. Brannon, J. M. and Pennington, J. C. (2002), Environmental fate and transport process descriptors for explosives, Technical Report TR-02-10, US Army Corps of Engineers, Engineer Research and Development Center. Vicksberg, MS, USA. pp. 1-4.
  3. Gee, G. W. and Bauder, J. W. (1986), Particle-size analysis, In Methods of soil analysis. Part II, Physical and mineralogical methods, American Society of Agronomy, Madison, WI, USA. pp. 383-411.
  4. Jenkins, T. F., Grant, C. L., Brar, G. S., Thorne, P. G., Ranney, T. A. and Schumacher, P. W. (1996), Assessment of sampling error associated with collection and analysis of soil samples at explosives-contaminated sites, Special Report 96-15, US Army Corps of Engineers, Cold Regions Research & Engineering Laboratory, Hanover, NH, USA, pp. 4-9.
  5. KATS (Korean Agency for Technology and Standards) (2007), Development of standard methods of explosive compounds analysis in soils, pp. 37-40 (in Korean).
  6. Monteil-Rivera, F., Halasz, A., Groom, C., Zhao, J. S., Thiboutot, S., Ampleman, G. and Hawari, J. (2009), Fate and transport of explosives in the environment: A chemist's view, In "Ecotoxicology of explosives", Eds. Sunahara, G.I., Lotufo, G., Kuperman, R.G., and Hawari, J., CRC Press, Boca Raton, USA, pp. 5-34.
  7. Park, S. H., Bae, B. H., Kim, M. K. and Chang, Y. Y. (2008), Distribution and behavior of mixed contaminants, explosives and heavy metals, at a small scale military shooting range, Jounal of Korean Society on Water Quality, Vol. 24, No. 5, pp. 523-532 (in Korean).
  8. Pennington, J. C., Jenkins, T. F., Ampleman, G., Thiboutot, S., Brannon, J. M., Lewis, J., DeLaney, J. E., Clausen, J., Hewitt, A. D., Hollander, M. A., Hayes, C. A., Stark, J. A., Marois, A., Brochu, S., Dinh, H. Q., Lambert, D., Gagnon, A., Bouchard, M., Martel, R., Brousseau, P., Perron, N. M., Lefebvre, R., Davis, W., Ranney, T. A., Gauthier, C., Taylor, S. and Ballard, J. M. (2006) Distribution and fate of energetics on DoD test and training ranges: Final report 3, US Army Corps of Engineers, pp. 4-10-4-33.
  9. Price, C. B., Brannon, J. M., Yost, S. Y. and Hayes, C. A. (2000), Adsorption and transformation of explosives in lowcarbon aquifer soils, ERDC/EL TR-00-11, US Army Corps of Engineers, Engineering Research and Development Center, Vicksberg, MS, USA, pp. 16-20.
  10. US Army Center for Health Promotion and Preventive Medicine (2001), Wildlife toxicity assessment for 2, 4, 6-trinitrotoluene, Project number 39-EJ-1138-00, Aberdeen Proving Ground, Maryland, USA, pp. 18-21.
  11. US Army Center for Health Promotion and Preventive Medicine (2002), Wildlife toxicity assessment for 1, 3, 5-trinitrohexahydro-1, 3, 5-triazine (RDX), Project Number 39-EJ1138-01B, Aberdeen Proving Ground, Maryland, USA, pp. 20-23.
  12. US EPA (2012a), 2012 Edition of the drinking water standards and health advisories, EPA 822-R-09-011. Office of Water, Washington, DC, USA, pp. 6-7.
  13. US EPA (2012b), Regional screening levels for chemical contaminants at superfund sites, http://www.epa.gov/reg3hwmd/risk/human/rb-concentration_table/index.htm.
  14. Walsh, M. R., Collins, C. M. and Hewitt, A. D. (2008), Energetic residues from blow-in-place detonation of 60-mm and 120-mm fuzed high-explosive mortar cartridges, Technical Report TR-08-19, US Army Corps of Engineers, Cold Region Research and Engineering Laboratory, Hanover, NH, USA, pp. 10-17.

Cited by

  1. 전분 환 투입에 의한 실험실 규모 침전지 저부에서의 생화학적 환경 변화와 화약물질(TNT 및 RDX) 분해 vol.19, pp.3, 2014, https://doi.org/10.7857/jsge.2014.19.3.082
  2. Analysis on the Conflicts and Damage by Military Installations in Terms of Environmental Justice: Focusing on the Youngpyeong Firing Range vol.13, pp.3, 2015, https://doi.org/10.16958/drsr.2015.13.3.29