DOI QR코드

DOI QR Code

Anti-adipogenic Effect of Fermented Coffee with Monascus ruber Mycelium by Solid-State Culture of Green Coffee Beans

3T3-L1 지방전구세포에서 홍국균 균사체-고체발효 원두커피 추출물의 지방축적 억제효과

  • Lim, Yongrae (Dept. of Food Science and Technology, Chungbuk National University) ;
  • Shin, Ji-Young (R&D Center, CosisBio Co. Ltd.) ;
  • Kim, Hoon (R&D Center, CosisBio Co. Ltd.) ;
  • Baek, Gil-Hun (Dept. of Food Science and Technology, Chungbuk National University) ;
  • Yu, Kwang-Won (Dept. of Food and Nutrition, Korea National University of Transportation) ;
  • Jeong, Heon-Sang (Dept. of Food Science and Technology, Chungbuk National University) ;
  • Lee, Junsoo (Dept. of Food Science and Technology, Chungbuk National University)
  • 임용래 (충북대학교 식품생명공학과) ;
  • 신지영 ((주)코시스바이오 기업부설연구소) ;
  • 김훈 ((주)코시스바이오 기업부설연구소) ;
  • 백길훈 (충북대학교 식품생명공학과) ;
  • 유광원 (한국교통대학교 식품공학과) ;
  • 정헌상 (충북대학교 식품생명공학과) ;
  • 이준수 (충북대학교 식품생명공학과)
  • Received : 2013.11.27
  • Accepted : 2014.02.21
  • Published : 2014.04.30

Abstract

Obesity is the leading metabolic disease in industrialized countries and is closely associated with coronary heart disease, hypertension, diabetes, and cancer. The objective of this study was to evaluate the anti-adipogenic effects of two roasted coffee beans, Vietnam robusta (VR) and Ethiopia Mocha Sidamo G2 (ES), as well as fermented coffee beans with Monascus ruber (MR) mycelium on differentiation of 3T3-L1 preadipocytes. Treatments with 1,000 ${\mu}g/mL$ of hot water extract from coffee beans significantly reduced intracellular lipid accumulation. In addition, VR more effectively inhibited transcription factors such as $PPAR{\gamma}$, $C/EBP{\alpha}$, FAS, and aP2 compared to ES. Further, ES fermented with MR showed more effective anti-adipogenic activity than non-fermented ES. These results suggest that VR and ES inhibit adipocyte differentiation which may contribute to their anti-adipogenic properties.

본 연구에서는 두 품종의 원두커피와 이를 Monascus ruber 홍국균으로 발효시킨 원두커피 열수추출물의 지방축적 억제활성을 확인하고자 하였다. 세포 내 triglyceride 생성 저해효과 및 주요 전사인자인 $PPAR{\gamma}$, $C/EBP{\alpha}$와 FAS 및 aP2의 발현을 측정하기 위해 3T3-L1 지방전구세포에서 성숙 지방세포로의 분화 유도와 함께 베트남 로부스타(VR), 홍국균으로 고체발효 한 베트남 로부스타(MR-VR), 발아현미(10, 20, 30%)를 첨가하여 홍국균으로 고체발효 한 베트남 로부스타(MR-VR10, MR-VR20, MR-VR30), 에티오피아 모카 시다모 G2(ES), 홍국균으로 고체발효 한 에티오피아 모카 시다모 G2(MR-ES), 발아현미(10, 20, 30%)를 첨가하여 홍국균으로 고체발효 한 에티오피아 모카 시다모 G2(MR-ES10, MR-ES20, MR-ES30) 원두커피의 열수추출물을 1,000 ${\mu}g/mL$ 농도로 처리하였다. 연구 결과 대조군과 비교하여 커피추출물을 처리한 모든 실험군에서 유의적으로 지방구 생성이 감소하였다. 베트남 로부스타 품종이 에티오피아 모카 시다모 G2 품종보다 지방구 생성 및 지방분화 전사인자들인 $PPAR{\gamma}$, $C/EBP{\alpha}$, FAS 및 aP2의 발현을 효과적으로 억제하였으며, 에티오피아 모카 시다모 G2 품종의 경우 원두커피 열수추출물을 처리한 실험군보다 홍국균으로 고체발효 한 원두커피의 열수추출물을 처리한 실험군에서 더 높은 지방분화 억제능을 나타냈다. 또한 전사인자들의 발현 정도는 지방분화 억제능의 결과와 유사하였다. 따라서 Monascus ruber 홍국균의 고체배양을 이용한 에피오티아 모카 시다모 G2 발효원두커피는 효과적인 항비만 기능성 식품으로서의 활용가치가 기대되며 로부스타 품종의 경우 다른 품종들보다 저렴한 원가를 감안할 때 베트남 로부스타 발효원두커피는 경제적인 기능성 커피음료 및 기능성 소재로서 산업적인 응용에 좋은 활용가치가 될 것으로 사료된다.

Keywords

References

  1. Eckel R. 1997. Obesity and heart disease: a statement for healthcare professionals from the Nutrition Committee, American Heart Association. Circulation 96: 3248-3250. https://doi.org/10.1161/01.CIR.96.9.3248
  2. Farmer SR. 2006. Transcriptional control of adipocyte formation. Cell Metab 4: 263-273. https://doi.org/10.1016/j.cmet.2006.07.001
  3. Gregoire FM, Smas CM, Sul HS. 1988. Understanding adipocyte differentiation. Physiol Rev 78: 783-809.
  4. Rosen ED, Spiegelman BM. 2000. Molecular regulation of adipogenesis. Annu Rev Cell Dev Biol 16: 145-171. https://doi.org/10.1146/annurev.cellbio.16.1.145
  5. Rosen ED, Walkey CJ, Puigserver P, Spiegelman BM. 2000. Transcriptional regulation of adipogenesis. Genes Dev 14:1293-1307.
  6. MacDougald OA, Lane MD. 1995. Transcriptional regulation of gene expression during adipocyte differentiation. Annu Rev Biochem 64: 345-373. https://doi.org/10.1146/annurev.bi.64.070195.002021
  7. Seo H, Kim SH, Hwang IK. 2003. Comparison on physicochemical properties and antioxidant activities of commonly consumed coffees at coffee shops in Seoul downtown. Korean J Soc Food Cookery Sci 19: 624-630.
  8. Brezova V, Slebodova A, Stasko A. 2009. Coffee as a source of antioxidants: an EPR study. Food Chem 114: 859-868. https://doi.org/10.1016/j.foodchem.2008.10.025
  9. Esquivel P, Jimenez VM. 2012. Functional properties of coffee and coffee by-products. Food Res Int 46: 488-495. https://doi.org/10.1016/j.foodres.2011.05.028
  10. Chu YF, Brown PH, Lyle BJ, Chen Y, Black RM, Williams CE, Lin YC, Hsu CW, Cheng IH. 2009. Roasted coffees high in lipophilic antioxidants and chlorogenic acid lactones are more neuroprotective than green coffees. J Agric Food Chem 57: 9801-9808. https://doi.org/10.1021/jf902095z
  11. Ma J, Li Y, Ye Q, Li J, Hua Y, Ju D, Zhang D, Cooper R, Chang M. 2000. Constituents of red yeast rice, a traditional Chinese food and medicine. J Agric Food Chem 48:5220-5225. https://doi.org/10.1021/jf000338c
  12. Wild D, Toch G, Humpf HU. 2002. New Monascus metabolite isolated from red yeast rice (angkak, red koji). J Agric Food Chem 50: 3999-4002. https://doi.org/10.1021/jf020023s
  13. Endo A. 1980. Monacolin K, a new hypocholesterolemic agent that specifically inhibits 3-hydroxy-3-methylglutaryl coenzyme A reductase. J Antibiot (Tokyo) 33: 334-336. https://doi.org/10.7164/antibiotics.33.334
  14. Yasukawa K, Takahashi M, Natori S, Kawai KI, Yamazaki M, Tkeuchi M, Takito M. 1994. Azaphilones inhibit tumor promotion by 12-O-tetradecanoylphorbol-13-acetate in twostage cacinogenesis in mice. Oncology 51: 108-112. https://doi.org/10.1159/000227320
  15. Wong HC, Bau YS. 1977. Pigmentation and antibacterial activity of fast neuron and X-ray induced strains of Monascus purpureus Went. Plant Physiol 60: 578-592. https://doi.org/10.1104/pp.60.4.578
  16. Ji HH, Jeong HY, Jin S, Kwon HJ, Kim BW. 2012. Inhibition of adipocyte differentiation by methanol extract of Oenanthe javanica seed in 3T3-L1 preadipocytes. J Life Sci 22: 1688-1696. https://doi.org/10.5352/JLS.2012.22.12.1688
  17. Hecimovic I, Belscak-Cvitanovic A, Horzic D, Komes D. 2011. Comparative study of polyphenols and caffeine in different coffee varieties affected by the degree of roasting. Food Chem 129: 991-1000. https://doi.org/10.1016/j.foodchem.2011.05.059
  18. Shin JY, Kim H, Kim DG, Baek GH, Jeong HS, Yu KW. 2013. Pharmacological activities of coffee roasted from fermented green coffee beans with fungal mycelia in solid-state culture. J Korean Soc Food Sci Nutr 42: 487-496. https://doi.org/10.3746/jkfn.2013.42.3.487
  19. Cha JY, Park JC, Ahn HY, Eom KE, Park BK, Jun BS, Lee CH, Cho YS. 2009. Effect of Monascus purpureus-fermented Korean red ginseng powder on the serum lipid levels and antioxidative activity in rats. J Korean Soc Food Sci Nutr 38: 1153-1160. https://doi.org/10.3746/jkfn.2009.38.9.1153
  20. Cowherd RM, Lyle RE, McGehee RE Jr. 1999. Molecular regulation of adipocyte differentiation. Semin Cell Dev Biol 10: 3-10. https://doi.org/10.1006/scdb.1998.0276
  21. Reusch JE, Colton LA, Klemm DJ. 2000. CREB activation induces adipogenesis in 3T3-L1 cells. Mol Cell Biol 20:1008-1020. https://doi.org/10.1128/MCB.20.3.1008-1020.2000
  22. Park SJ, Lee IS, Lee SP, Yu MH. 2013. Inhibition of adipocyte differentiation and adipogenesis by supercritical fluid extracts and marc from Cinnamomum verum. J Life Sci 23:510-517. https://doi.org/10.5352/JLS.2013.23.4.510

Cited by

  1. Effect of Acacia catechu Extract on 3T3-L1 Preadipocyte Differentiation vol.45, pp.8, 2016, https://doi.org/10.3746/jkfn.2016.45.8.1107
  2. Antiobesity Activity of Chrysanthemum zawadskii Methanol Extract vol.25, pp.3, 2015, https://doi.org/10.5352/JLS.2015.25.3.299
  3. Anti-obesity effect of robusta fermented with Leuconostoc mesenteroides in high-fat diet-induced obese mice vol.14, pp.4, 2017, https://doi.org/10.3892/etm.2017.4990
  4. 약용식물과 커피 혼합물로부터 기능성 건강음료의 항균 및 항산화 효과 vol.26, pp.11, 2014, https://doi.org/10.5352/jls.2016.26.11.1225
  5. Anti-Obesity Effect of Soybean Fermented with Monascus in High-Fat Diet Induced Obese Mice Model vol.31, pp.5, 2021, https://doi.org/10.17495/easdl.2021.10.31.5.333