DOI QR코드

DOI QR Code

Hyperglycemia as a Risk Factor for Cancer Progression

  • Ryu, Tae Young (Department of Biological Sciences, Ulsan National Institute of Science and Technology School of Life Sciences) ;
  • Park, Jiyoung (Department of Biological Sciences, Ulsan National Institute of Science and Technology School of Life Sciences) ;
  • Scherer, Philipp E. (Touchstone Diabetes Center, Department of Internal Medicine, Cell Biology and Simmons Cancer, University of Texas Southwestern Medical Center)
  • Published : 2014.10.17

Abstract

As the prevalence of diabetes mellitus is substantially increasing worldwide, associated diseases such as renal failure, cardiovascular diseases, fatty liver, and cancers have also increased. A number of cancers such as pancreatic, liver, breast, and female reproductive cancers have shown an increased prevalence and a higher mortality rate in diabetic patients compared to healthy subjects. Thus, this suggests an association between diabetes, especially type 2 diabetes and cancer incidence and progression. Recent studies have suggested that hyperinsulinemia, chronic inflammation and hyperglycemia, all frequently seen in diabetics, may lead to increased tumor growth; the underlying molecular mechanisms of this association are not fully understood. In particular, chronic hyperglycemic episodes could serve as a direct or indirect mediator of the increase in tumor cell growth. Here, we will discuss our current understanding how hyperglycemia and cancer risk may be linked, and what the implications are for the treatment of diabetic cancer patients.

Keywords

Acknowledgement

Supported by : Ulsan National Institute of Science and Technology

References

  1. Vigneri P, Frasca F, Sciacca L, Pandini G, Vigneri R. Diabetes and cancer. Endocr Relat Cancer 2009;16:1103-23. https://doi.org/10.1677/ERC-09-0087
  2. Johnson JA, Carstensen B, Witte D, Bowker SL, Lipscombe L, Renehan AG; Diabetes and Cancer Research Consortium. Diabetes and cancer (1): evaluating the temporal relationship between type 2 diabetes and cancer incidence. Diabetologia 2012;55:1607-18. https://doi.org/10.1007/s00125-012-2525-1
  3. Suh S, Kim KW. Diabetes and cancer: is diabetes causally related to cancer? Diabetes Metab J 2011;35:193-8. https://doi.org/10.4093/dmj.2011.35.3.193
  4. Bonovas S, Filioussi K, Tsantes A. Diabetes mellitus and risk of prostate cancer: a meta-analysis. Diabetologia 2004;47:1071-8.
  5. Onitilo AA, Engel JM, Glurich I, Stankowski RV, Williams GM, Doi SA. Diabetes and cancer I: risk, survival, and implications for screening. Cancer Causes Control 2012;23:967-81. https://doi.org/10.1007/s10552-012-9972-3
  6. Giovannucci E. Insulin, insulin-like growth factors and colon cancer: a review of the evidence. J Nutr 2001;131(11 Suppl):3109S-20S.
  7. Bruning PF, Bonfrer JM, van Noord PA, Hart AA, de Jong-Bakker M, Nooijen WJ. Insulin resistance and breast-cancer risk. Int J Cancer 1992;52:511-6. https://doi.org/10.1002/ijc.2910520402
  8. Reaven GM. Insulin resistance, the insulin resistance syndrome, and cardiovascular disease. Panminerva Med 2005;47:201-10.
  9. Coussens LM, Werb Z. Inflammation and cancer. Nature 2002;420:860-7. https://doi.org/10.1038/nature01322
  10. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 2006;160:1-40. https://doi.org/10.1016/j.cbi.2005.12.009
  11. Duan W, Shen X, Lei J, Xu Q, Yu Y, Li R, Wu E, Ma Q. Hyperglycemia, a neglected factor during cancer progression. Biomed Res Int 2014;2014:461917.
  12. Siebel AL, Fernandez AZ, El-Osta A. Glycemic memory associated epigenetic changes. Biochem Pharmacol 2010;80:1853-9. https://doi.org/10.1016/j.bcp.2010.06.005
  13. Cencioni C, Spallotta F, Greco S, Martelli F, Zeiher AM, Gaetano C. Epigenetic mechanisms of hyperglycemic memory. Int J Biochem Cell Biol 2014;51:155-8. https://doi.org/10.1016/j.biocel.2014.04.014
  14. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011;144:646-74. https://doi.org/10.1016/j.cell.2011.02.013
  15. Warburg O. On the origin of cancer cells. Science 1956;123:309-14. https://doi.org/10.1126/science.123.3191.309
  16. Masur K, Vetter C, Hinz A, Tomas N, Henrich H, Niggemann B, Zanker KS. Diabetogenic glucose and insulin concentrations modulate transcriptome and protein levels involved in tumour cell migration, adhesion and proliferation. Br J Cancer 2011;104:345-52. https://doi.org/10.1038/sj.bjc.6606050
  17. Krone CA, Ely JT. Controlling hyperglycemia as an adjunct to cancer therapy. Integr Cancer Ther 2005;4:25-31. https://doi.org/10.1177/1534735404274167
  18. Derr RL, Ye X, Islas MU, Desideri S, Saudek CD, Grossman SA. Association between hyperglycemia and survival in patients with newly diagnosed glioblastoma. J Clin Oncol 2009;27:1082-6. https://doi.org/10.1200/JCO.2008.19.1098
  19. Hosokawa T, Kurosaki M, Tsuchiya K, Matsuda S, Muraoka M, Suzuki Y, Tamaki N, Yasui Y, Nakata T, Nishimura T, Suzuki S, Ueda K, Nakanishi H, Itakura J, Takahashi Y, Izumi N. Hyperglycemia is a significant prognostic factor of hepatocellular carcinoma after curative therapy. World J Gastroenterol 2013;19:249-57. https://doi.org/10.3748/wjg.v19.i2.249
  20. Hahn T, Barth S, Hofmann W, Reich O, Lang I, Desoye G. Hyperglycemia regulates the glucose-transport system of clonal choriocarcinoma cells in vitro. A potential molecular mechanism contributing to the adjunct effect of glucose in tumor therapy. Int J Cancer 1998;78:353-60. https://doi.org/10.1002/(SICI)1097-0215(19981029)78:3<353::AID-IJC16>3.0.CO;2-7
  21. Han L, Ma Q, Li J, Liu H, Li W, Ma G, Xu Q, Zhou S, Wu E. High glucose promotes pancreatic cancer cell proliferation via the induction of EGF expression and transactivation of EGFR. PLoS One 2011;6:e27074. https://doi.org/10.1371/journal.pone.0027074
  22. Okumura M, Yamamoto M, Sakuma H, Kojima T, Maruyama T, Jamali M, Cooper DR, Yasuda K. Leptin and high glucose stimulate cell proliferation in MCF-7 human breast cancer cells: reciprocal involvement of PKC-alpha and PPAR expression. Biochim Biophys Acta 2002;1592:107-16. https://doi.org/10.1016/S0167-4889(02)00276-8
  23. Ways DK, Kukoly CA, deVente J, Hooker JL, Bryant WO, Posekany KJ, Fletcher DJ, Cook PP, Parker PJ. MCF-7 breast cancer cells transfected with protein kinase C-alpha exhibit altered expression of other protein kinase C isoforms and display a more aggressive neoplastic phenotype. J Clin Invest 1995;95:1906-15. https://doi.org/10.1172/JCI117872
  24. Mueller E, Sarraf P, Tontonoz P, Evans RM, Martin KJ, Zhang M, Fletcher C, Singer S, Spiegelman BM. Terminal differentiation of human breast cancer through PPAR gamma. Mol Cell 1998;1:465-70. https://doi.org/10.1016/S1097-2765(00)80047-7
  25. Liu H, Ma Q, Li J. High glucose promotes cell proliferation and enhances GDNF and RET expression in pancreatic cancer cells. Mol Cell Biochem 2011;347:95-101. https://doi.org/10.1007/s11010-010-0617-0
  26. Lin LF, Doherty DH, Lile JD, Bektesh S, Collins F. GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 1993;260:1130-2. https://doi.org/10.1126/science.8493557
  27. Veit C, Genze F, Menke A, Hoeffert S, Gress TM, Gierschik P, Giehl K. Activation of phosphatidylinositol 3-kinase and extracellular signal-regulated kinase is required for glial cell line-derived neurotrophic factor-induced migration and invasion of pancreatic carcinoma cells. Cancer Res 2004;64:5291-300. https://doi.org/10.1158/0008-5472.CAN-04-1112
  28. Cotter TG. Apoptosis and cancer: the genesis of a research field. Nat Rev Cancer 2009;9:501-7. https://doi.org/10.1038/nrc2663
  29. Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nat Rev Cancer 2004;4:891-9. https://doi.org/10.1038/nrc1478
  30. Semenza GL. Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annu Rev Cell Dev Biol 1999;15:551-78. https://doi.org/10.1146/annurev.cellbio.15.1.551
  31. Lee JW, Bae SH, Jeong JW, Kim SH, Kim KW. Hypoxia-inducible factor (HIF-1)alpha: its protein stability and biological functions. Exp Mol Med 2004;36:1-12. https://doi.org/10.1038/emm.2004.1
  32. Catrina SB, Okamoto K, Pereira T, Brismar K, Poellinger L. Hyperglycemia regulates hypoxia-inducible factor-1alpha protein stability and function. Diabetes 2004;53:3226-32. https://doi.org/10.2337/diabetes.53.12.3226
  33. Vaughn AE, Deshmukh M. Glucose metabolism inhibits apoptosis in neurons and cancer cells by redox inactivation of cytochrome c. Nat Cell Biol 2008;10:1477-83. https://doi.org/10.1038/ncb1807
  34. Kaplowitz N, Aw TY, Ookhtens M. The regulation of hepatic glutathione. Annu Rev Pharmacol Toxicol 1985;25:715-44. https://doi.org/10.1146/annurev.pa.25.040185.003435
  35. Walters S, Maringe C, Coleman MP, Peake MD, Butler J, Young N, Bergstrom S, Hanna L, Jakobsen E, Kolbeck K, Sundstrom S, Engholm G, Gavin A, Gjerstorff ML, Hatcher J, Johannesen TB, Linklater KM, McGahan CE, Steward J, Tracey E, Turner D, Richards MA, Rachet B; ICBP Module 1 Working Group. Lung cancer survival and stage at diagnosis in Australia, Canada, Denmark, Norway, Sweden and the UK: a population-based study, 2004-2007. Thorax 2013;68:551-64. https://doi.org/10.1136/thoraxjnl-2012-202297
  36. Iwatsuki M, Mimori K, Yokobori T, Ishi H, Beppu T, Nakamori S, Baba H, Mori M. Epithelial-mesenchymal transition in cancer development and its clinical significance. Cancer Sci 2010;101:293-9. https://doi.org/10.1111/j.1349-7006.2009.01419.x
  37. Dong C, Yuan T, Wu Y, Wang Y, Fan TW, Miriyala S, Lin Y, Yao J, Shi J, Kang T, Lorkiewicz P, St Clair D, Hung MC, Evers BM, Zhou BP. Loss of FBP1 by Snail-mediated repression provides metabolic advantages in basal-like breast cancer. Cancer Cell 2013;23:316-31. https://doi.org/10.1016/j.ccr.2013.01.022
  38. Li W, Ma Q, Li J, Guo K, Liu H, Han L, Ma G. Hyperglycemia enhances the invasive and migratory activity of pancreatic cancer cells via hydrogen peroxide. Oncol Rep 2011;25:1279-87.
  39. Storz P. Mitochondrial ROS: radical detoxification, mediated by protein kinase D. Trends Cell Biol 2007;17:13-8. https://doi.org/10.1016/j.tcb.2006.11.003
  40. Schmitt M, Harbeck N, Thomssen C, Wilhelm O, Magdolen V, Reuning U, Ulm K, Hofler H, Janicke F, Graeff H. Clinical impact of the plasminogen activation system in tumor invasion and metastasis: prognostic relevance and target for therapy. Thromb Haemost 1997;78:285-96.
  41. Fukada T, Yamasaki S, Nishida K, Murakami M, Hirano T. Zinc homeostasis and signaling in health and diseases: Zinc signaling. J Biol Inorg Chem 2011;16:1123-34. https://doi.org/10.1007/s00775-011-0797-4
  42. Takatani-Nakase T, Matsui C, Maeda S, Kawahara S, Takahashi K. High glucose level promotes migration behavior of breast cancer cells through zinc and its transporters. PLoS One 2014;9:e90136. https://doi.org/10.1371/journal.pone.0090136
  43. Lopez V, Kelleher SL. Zip6-attenuation promotes epithelial-to-mesenchymal transition in ductal breast tumor (T47D) cells. Exp Cell Res 2010;316:366-75. https://doi.org/10.1016/j.yexcr.2009.10.011
  44. Brasacchio D, Okabe J, Tikellis C, Balcerczyk A, George P, Baker EK, Calkin AC, Brownlee M, Cooper ME, El-Osta A. Hyperglycemia induces a dynamic cooperativity of histone methylase and demethylase enzymes associated with gene-activating epigenetic marks that coexist on the lysine tail. Diabetes 2009;58:1229-36. https://doi.org/10.2337/db08-1666
  45. Park J, Sarode VR, Euhus D, Kittler R, Scherer PE. Neuregulin 1-HER axis as a key mediator of hyperglycemic memory effects in breast cancer. Proc Natl Acad Sci U S A 2012;109:21058-63. https://doi.org/10.1073/pnas.1214400109
  46. Stove C, Bracke M. Roles for neuregulins in human cancer. Clin Exp Metastasis 2004;21:665-84.
  47. Krentz AJ, Bailey CJ. Oral antidiabetic agents: current role in type 2 diabetes mellitus. Drugs 2005;65:385-411. https://doi.org/10.2165/00003495-200565030-00005
  48. Pernicova I, Korbonits M. Metformin: mode of action and clinical implications for diabetes and cancer. Nat Rev Endocrinol 2014;10:143-56. https://doi.org/10.1038/nrendo.2013.256
  49. Li D. Metformin as an antitumor agent in cancer prevention and treatment. J Diabetes 2011;3:320-7. https://doi.org/10.1111/j.1753-0407.2011.00119.x
  50. Gallagher EJ, LeRoith D. Diabetes, cancer, and metformin: connections of metabolism and cell proliferation. Ann N Y Acad Sci 2011;1243:54-68. https://doi.org/10.1111/j.1749-6632.2011.06285.x
  51. Soranna D, Scotti L, Zambon A, Bosetti C, Grassi G, Catapano A, La Vecchia C, Mancia G, Corrao G. Cancer risk associated with use of metformin and sulfonylurea in type 2 diabetes: a meta-analysis. Oncologist 2012;17:813-22. https://doi.org/10.1634/theoncologist.2011-0462
  52. Zordoky BN, Bark D, Soltys CL, Sung MM, Dyck JR. The anti-proliferative effect of metformin in triple-negative MDA-MB-231 breast cancer cells is highly dependent on glucose concentration: implications for cancer therapy and prevention. Biochim Biophys Acta 2014;1840:1943-57. https://doi.org/10.1016/j.bbagen.2014.01.023
  53. Takahashi A, Kimura F, Yamanaka A, Takebayashi A, Kita N, Takahashi K, Murakami T. Metformin impairs growth of endometrial cancer cells via cell cycle arrest and concomitant autophagy and apoptosis. Cancer Cell Int 2014;14:53. https://doi.org/10.1186/1475-2867-14-53
  54. Hirsch HA, Iliopoulos D, Tsichlis PN, Struhl K. Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission. Cancer Res 2009;69:7507-11. https://doi.org/10.1158/0008-5472.CAN-09-2994
  55. Blandino G, Valerio M, Cioce M, Mori F, Casadei L, Pulito C, Sacconi A, Biagioni F, Cortese G, Galanti S, Manetti C, Citro G, Muti P, Strano S. Metformin elicits anticancer effects through the sequential modulation of DICER and c-MYC. Nat Commun 2012;3:865. https://doi.org/10.1038/ncomms1859
  56. Johnson JA, Pollak M. Insulin, glucose and the increased risk of cancer in patients with type 2 diabetes. Diabetologia 2010;53:2086-8. https://doi.org/10.1007/s00125-010-1855-0
  57. Suissa S, Azoulay L, Dell'Aniello S, Evans M, Vora J, Pollak M. Long-term effects of insulin glargine on the risk of breast cancer. Diabetologia 2011;54:2254-62. https://doi.org/10.1007/s00125-011-2190-9
  58. Fagot JP, Blotiere PO, Ricordeau P, Weill A, Alla F, Allemand H. Does insulin glargine increase the risk of cancer compared with other basal insulins?: a French nationwide cohort study based on national administrative databases. Diabetes Care 2013;36:294-301. https://doi.org/10.2337/dc12-0506
  59. Murphy GJ, Holder JC. PPAR-gamma agonists: therapeutic role in diabetes, inflammation and cancer. Trends Pharmacol Sci 2000;21:469-74. https://doi.org/10.1016/S0165-6147(00)01559-5
  60. Oliveria SA, Koro CE, Yood MU, Sowell M. Cancer incidence among patients treated with antidiabetic pharmacotherapy. Diabetes Metab Syndr 2008;2:47-57. https://doi.org/10.1016/j.dsx.2007.11.002
  61. Bodmer M, Meier C, Krahenbuhl S, Jick SS, Meier CR. Long-term metformin use is associated with decreased risk of breast cancer. Diabetes Care 2010;33:1304-8. https://doi.org/10.2337/dc09-1791
  62. Franciosi M, Lucisano G, Lapice E, Strippoli GF, Pellegrini F, Nicolucci A. Metformin therapy and risk of cancer in patients with type 2 diabetes: systematic review. PLoS One 2013;8:e71583. https://doi.org/10.1371/journal.pone.0071583

Cited by

  1. Diabetes and risk of cancer vol.6, pp.3, 2014, https://doi.org/10.1007/s13340-015-0227-x
  2. Reply to "Preoperative Evaluation of Pancreatic Adenocarcinoma". vol.205, pp.2, 2014, https://doi.org/10.2214/ajr.15.14643
  3. 성인 당뇨병환자의 혈당조절에 따른 특성 및 영향요인 vol.16, pp.5, 2015, https://doi.org/10.5762/kais.2015.16.5.3284
  4. Resveratrol in the treatment of pancreatic cancer vol.1348, pp.1, 2014, https://doi.org/10.1111/nyas.12837
  5. Thymic emigration patterns in patients with type 2 diabetes treated with metformin vol.146, pp.3, 2014, https://doi.org/10.1111/imm.12522
  6. Association between baseline serum glucose, triglycerides and total cholesterol, and prostate cancer risk categories vol.5, pp.6, 2014, https://doi.org/10.1002/cam4.665
  7. Controlling Malglycemia in Patients Undergoing Treatment for Cancer vol.20, pp.1, 2016, https://doi.org/10.1188/16.cjon.92-94
  8. Addressing the Role of Obesity in Endometrial Cancer Risk, Prevention, and Treatment vol.34, pp.35, 2016, https://doi.org/10.1200/jco.2016.69.4638
  9. Diabetes mellitus stimulates pancreatic cancer growth and epithelial-mesenchymal transition-mediated metastasis via a p38 MAPK pathway vol.7, pp.25, 2014, https://doi.org/10.18632/oncotarget.9533
  10. Mechanisms through which diabetes mellitus influences renal cell carcinoma development and treatment: A review of the literature vol.38, pp.6, 2016, https://doi.org/10.3892/ijmm.2016.2776
  11. Methylglyoxal, a glycolysis side-product, induces Hsp90 glycation and YAP-mediated tumor growth and metastasis vol.5, pp.None, 2016, https://doi.org/10.7554/elife.19375
  12. ZnCl 2 sustains the adriamycin-induced cell death inhibited by high glucose vol.7, pp.None, 2014, https://doi.org/10.1038/cddis.2016.178
  13. Obesity, Inflammation, and Cancer vol.11, pp.11, 2014, https://doi.org/10.1146/annurev-pathol-012615-044359
  14. Cancer Risk in Patients With Empyema : A Nationwide Population-Based Study vol.95, pp.9, 2014, https://doi.org/10.1097/md.0000000000002934
  15. High Glucose Stimulates Tumorigenesis in Hepatocellular Carcinoma Cells Through AGER-Dependent O-GlcNAcylation of c-Jun vol.65, pp.3, 2016, https://doi.org/10.2337/db15-1057
  16. Diabetes Pharmacotherapies and Bladder Cancer: A Medicare Epidemiologic Study vol.7, pp.1, 2014, https://doi.org/10.1007/s13300-016-0152-4
  17. Metformin, Diabetes, and Survival among U.S. Veterans with Colorectal Cancer vol.25, pp.10, 2014, https://doi.org/10.1158/1055-9965.epi-16-0312
  18. Impact of Hyperglycemia on Outcomes among Patients Receiving Neoadjuvant Chemotherapy for Bulky Early Stage Cervical Cancer vol.11, pp.11, 2016, https://doi.org/10.1371/journal.pone.0166612
  19. Risk factors for cancer development in type 2 diabetes: A retrospective case-control study vol.16, pp.None, 2014, https://doi.org/10.1186/s12885-016-2836-6
  20. Hyperglycemia triggers HIPK2 protein degradation vol.8, pp.1, 2014, https://doi.org/10.18632/oncotarget.13595
  21. Modulation of Mammary Stromal Cell Lactate Dynamics by Ambient Glucose and Epithelial Factors vol.232, pp.1, 2014, https://doi.org/10.1002/jcp.25398
  22. Efficacy of Complementary Therapies in the Quality of Life of Breast Cancer Survivors vol.7, pp.None, 2014, https://doi.org/10.3389/fonc.2017.00326
  23. Hyperglycemia exacerbates colon cancer malignancy through hexosamine biosynthetic pathway vol.6, pp.3, 2014, https://doi.org/10.1038/oncsis.2017.2
  24. Gestational diabetes mellitus may be associated with increased risk of breast cancer vol.116, pp.7, 2017, https://doi.org/10.1038/bjc.2017.34
  25. Enemies or weapons in hands: investigational anti-diabetic drug glibenclamide and cancer risk vol.26, pp.7, 2014, https://doi.org/10.1080/13543784.2017.1333104
  26. Hyperglycaemia and aberrated insulin signalling stimulate tumour progression via induction of the extracellular matrix component hyaluronan vol.141, pp.4, 2014, https://doi.org/10.1002/ijc.30776
  27. Differences in risk factors of malignancy between men and women with type 2 diabetes: A retrospective case-control study vol.8, pp.40, 2014, https://doi.org/10.18632/oncotarget.17716
  28. Anthocyanins from Purple Corn Ameliorated Tumor Necrosis Factor‐α‐Induced Inflammation and Insulin Resistance in 3T3‐L1 Adipocytes via Activation of Insulin Signaling and Enhan vol.61, pp.12, 2017, https://doi.org/10.1002/mnfr.201700362
  29. The essential role of YAP O-GlcNAcylation in high-glucose-stimulated liver tumorigenesis vol.8, pp.1, 2014, https://doi.org/10.1038/ncomms15280
  30. Associations between prediagnostic blood glucose levels, diabetes, and glioma vol.7, pp.None, 2014, https://doi.org/10.1038/s41598-017-01553-2
  31. Pretreatment glycemic control status is an independent prognostic factor for cervical cancer patients receiving neoadjuvant chemotherapy for locally advanced disease vol.17, pp.None, 2014, https://doi.org/10.1186/s12885-017-3510-3
  32. Energy metabolism in glioblastoma stem cells: PPARα a metabolic adaptor to intratumoral microenvironment vol.8, pp.65, 2014, https://doi.org/10.18632/oncotarget.19086
  33. Extracellular matrix glycation and receptor for advanced glycation end-products activation: a missing piece in the puzzle of the association between diabetes and cancer vol.39, pp.4, 2018, https://doi.org/10.1093/carcin/bgy012
  34. Inhibitory Effect of Anoectochilus formosanus Extract on Hyperglycemia-Related PD-L1 Expression and Cancer Proliferation vol.9, pp.None, 2014, https://doi.org/10.3389/fphar.2018.00807
  35. Model-based in silico analysis of the PI3K/Akt pathway: the elucidation of cross-talk between diabetes and breast cancer vol.6, pp.None, 2014, https://doi.org/10.7717/peerj.5917
  36. Laminar shear stress inhibits high glucose-induced migration and invasion in human bladder cancer cells vol.54, pp.2, 2018, https://doi.org/10.1007/s11626-017-0217-3
  37. Metformin reduces glucose intolerance caused by rapamycin treatment in genetically heterogeneous female mice vol.10, pp.3, 2018, https://doi.org/10.18632/aging.101401
  38. Hypoxia driven glycation: Mechanisms and therapeutic opportunities vol.49, pp.None, 2014, https://doi.org/10.1016/j.semcancer.2017.05.008
  39. High glucose contributes to the proliferation and migration of non-small-cell lung cancer cells via GAS5-TRIB3 axis vol.38, pp.2, 2018, https://doi.org/10.1042/bsr20171014
  40. High glucose induces epithelial-mesenchymal transition and results in the migration and invasion of colorectal cancer cells vol.16, pp.1, 2014, https://doi.org/10.3892/etm.2018.6189
  41. Good glycaemic control is associated with a better prognosis in breast cancer patients with type 2 diabetes mellitus vol.18, pp.3, 2018, https://doi.org/10.1007/s10238-018-0497-2
  42. 제2형 당뇨병의 외래환자 복약순응도와 보험유형과의 관계 vol.8, pp.4, 2014, https://doi.org/10.22156/cs4smb.2018.8.4.009
  43. Linking type 2 diabetes and gynecological cancer: an introductory overview vol.56, pp.9, 2014, https://doi.org/10.1515/cclm-2017-0982
  44. Beta-hydroxybutyrate (3-OHB) can influence the energetic phenotype of breast cancer cells, but does not impact their proliferation and the response to chemotherapy or radiation vol.6, pp.1, 2014, https://doi.org/10.1186/s40170-018-0180-9
  45. Hepatocellular carcinoma-associated hypercholesterolemia: involvement of proprotein-convertase-subtilisin-kexin type-9 (PCSK9) vol.6, pp.1, 2014, https://doi.org/10.1186/s40170-018-0187-2
  46. Gestational diabetes mellitus and maternal breast cancer risk: a meta-analysis of the literature vol.32, pp.6, 2014, https://doi.org/10.1080/14767058.2017.1397117
  47. Preoperative fasting hyperglycemia is an independent prognostic factor for postoperative survival after gallbladder carcinoma radical surgery vol.11, pp.None, 2014, https://doi.org/10.2147/cmar.s192273
  48. Metformin as an adjuvant in breast cancer treatment vol.7, pp.None, 2019, https://doi.org/10.1177/2050312119865114
  49. O-GlcNAcylation of GLI transcription factors in hyperglycemic conditions augments Hedgehog activity vol.99, pp.2, 2014, https://doi.org/10.1038/s41374-018-0122-8
  50. The added value of fasting blood glucose to serum squamous cell carcinoma antigen for predicting oncological outcomes in cervical cancer patients receiving neoadjuvant chemotherapy followed by radical vol.8, pp.11, 2014, https://doi.org/10.1002/cam4.2414
  51. Molecular Mechanisms of Cancer-Induced Sleep Disruption vol.20, pp.11, 2014, https://doi.org/10.3390/ijms20112780
  52. Flaxseed Lignans as Important Dietary Polyphenols for Cancer Prevention and Treatment: Chemistry, Pharmacokinetics, and Molecular Targets vol.12, pp.2, 2014, https://doi.org/10.3390/ph12020068
  53. Reduced chemotherapeutic sensitivity in high glucose condition: implication of antioxidant response vol.10, pp.45, 2014, https://doi.org/10.18632/oncotarget.27087
  54. Blood glucose, glucose balance, and disease-specific survival after prostate cancer diagnosis in the Finnish Randomized Study of Screening for Prostate Cancer vol.22, pp.3, 2019, https://doi.org/10.1038/s41391-018-0123-0
  55. Hyperglycemia Associated Metabolic and Molecular Alterations in Cancer Risk, Progression, Treatment, and Mortality vol.11, pp.9, 2014, https://doi.org/10.3390/cancers11091402
  56. Serum gamma-glutamyltransferase and the overall survival of metastatic pancreatic cancer vol.19, pp.1, 2014, https://doi.org/10.1186/s12885-019-6250-8
  57. Addition of zoledronic acid to neoadjuvant chemotherapy is not beneficial in patients with HER2-negative stage II/III breast cancer: 5-year survival analysis of the NEOZOTAC trial (BOOG 2010-01) vol.21, pp.1, 2014, https://doi.org/10.1186/s13058-019-1180-6
  58. HIPK2 role in the tumor-host interaction: Impact on fibroblasts transdifferentiation CAF‐like vol.71, pp.12, 2014, https://doi.org/10.1002/iub.2144
  59. Metabolomic profiling of blood plasma in patients with primary brain tumours: Basal plasma metabolites correlated with tumour grade and plasma biomarker analysis predicts feasibility of the successful vol.71, pp.12, 2019, https://doi.org/10.1002/iub.2149
  60. Assessing the Effect of Various Blood Glucose Levels on 18F-FDG Activity in the Brain, Liver, and Blood Pool vol.47, pp.4, 2014, https://doi.org/10.2967/jnmt.119.226969
  61. Herbal Medicines Attenuate PD-L1 Expression to Induce Anti-Proliferation in Obesity-Related Cancers vol.11, pp.12, 2014, https://doi.org/10.3390/nu11122979
  62. Recent advances in cancer chemoprevention with phytochemicals vol.28, pp.1, 2014, https://doi.org/10.1016/j.jfda.2019.11.001
  63. Mitigation of Glucolipotoxicity-Induced Apoptosis, Mitochondrial Dysfunction, and Metabolic Stress by N -Acetyl Cysteine in Pancreatic β-Cells vol.10, pp.2, 2020, https://doi.org/10.3390/biom10020239
  64. Doxorubicin delivery by polymer nanocarrier based on N-methylglucamine resorcinarene vol.32, pp.2, 2014, https://doi.org/10.1080/10610278.2020.1714620
  65. Pre-operative dysglycemia is associated with decreased survival in patients with pancreatic neuroendocrine neoplasms vol.167, pp.3, 2014, https://doi.org/10.1016/j.surg.2019.11.007
  66. Circulating free methylglyoxal as a metabolic tumor biomarker in a rat colon adenocarcinoma model vol.12, pp.4, 2020, https://doi.org/10.3892/mco.2020.2000
  67. Can novel adipokines, asprosin and meteorin-like, be biomarkers for malignant mesothelioma? vol.95, pp.3, 2014, https://doi.org/10.1080/10520295.2019.1656344
  68. Diabetes as a Risk Factor for Breast Cancer vol.12, pp.5, 2020, https://doi.org/10.7759/cureus.8010
  69. Diabetes, Glycated Hemoglobin, and Risk of Cancer in the UK Biobank Study vol.29, pp.6, 2014, https://doi.org/10.1158/1055-9965.epi-19-1623
  70. O-GlcNAcylation on LATS2 disrupts the Hippo pathway by inhibiting its activity vol.117, pp.25, 2014, https://doi.org/10.1073/pnas.1913469117
  71. Counteracting Chemoresistance with Metformin in Breast Cancers: Targeting Cancer Stem Cells vol.12, pp.9, 2020, https://doi.org/10.3390/cancers12092482
  72. NLRP3 as Putative Marker of Ipilimumab-Induced Cardiotoxicity in the Presence of Hyperglycemia in Estrogen-Responsive and Triple-Negative Breast Cancer Cells vol.21, pp.20, 2014, https://doi.org/10.3390/ijms21207802
  73. Glucose Concentration in Cell Culture Medium Influences the BRCA1-Mediated Regulation of the Lipogenic Action of IGF-I in Breast Cancer Cells vol.21, pp.22, 2014, https://doi.org/10.3390/ijms21228674
  74. Therapeutic effect of Aegle marmelos fruit extract against DMBA induced breast cancer in rats vol.10, pp.1, 2020, https://doi.org/10.1038/s41598-020-72935-2
  75. Diabetes Mellitus and Obesity as Risk Factors for Bladder Cancer Prognosis: A Systematic Review and Meta-Analysis vol.12, pp.None, 2014, https://doi.org/10.3389/fendo.2021.699732
  76. AGE-RAGE synergy influences programmed cell death signaling to promote cancer vol.476, pp.2, 2021, https://doi.org/10.1007/s11010-020-03928-y
  77. Dairy Consumption and Incidence of Breast Cancer in the ‘Seguimiento Universidad de Navarra’ (SUN) Project vol.13, pp.2, 2014, https://doi.org/10.3390/nu13020687
  78. The predictive power of CD3+ T cell infiltration of oral squamous cell tumors is limited to non-diabetic patients vol.499, pp.None, 2014, https://doi.org/10.1016/j.canlet.2020.11.029
  79. Hyperglycemia-Induced miR-467 Drives Tumor Inflammation and Growth in Breast Cancer vol.13, pp.6, 2014, https://doi.org/10.3390/cancers13061346
  80. Body Habitus Across the Lifespan and Risk of Pituitary Adenoma vol.106, pp.4, 2014, https://doi.org/10.1210/clinem/dgaa987
  81. Diabetes mellitus and oral cancer/oral potentially malignant disorders: A systematic review and meta‐analysis vol.27, pp.3, 2014, https://doi.org/10.1111/odi.13289
  82. Preexisting Type 2 Diabetes and Survival among Patients with Colorectal Cancer vol.30, pp.4, 2021, https://doi.org/10.1158/1055-9965.epi-20-1083
  83. Thrombospondin‐4 mediates hyperglycemia‐ and TGF‐beta‐induced inflammation in breast cancer vol.148, pp.8, 2014, https://doi.org/10.1002/ijc.33439
  84. Diabetes and Cancer: Metabolic Association, Therapeutic Challenges, and the Role of Natural Products vol.26, pp.8, 2014, https://doi.org/10.3390/molecules26082179
  85. Gut Microbiota and Gynecological Cancers: A Summary of Pathogenetic Mechanisms and Future Directions vol.7, pp.5, 2014, https://doi.org/10.1021/acsinfecdis.0c00839
  86. Prevalent diabetes and risk of total, colorectal, prostate and breast cancers in an ageing population: meta-analysis of individual participant data from cohorts of the CHANCES consortium vol.124, pp.11, 2014, https://doi.org/10.1038/s41416-021-01347-4
  87. Moringa Oleifera Seed Extract Concomitantly Supplemented with Chemotherapy Worsens Tumor Progression in Mice with Triple Negative Breast Cancer and Obesity vol.13, pp.9, 2014, https://doi.org/10.3390/nu13092923
  88. Insulin-like Growth Factor 2 mRNA-Binding Protein 2-a Potential Link Between Type 2 Diabetes Mellitus and Cancer vol.106, pp.10, 2021, https://doi.org/10.1210/clinem/dgab391
  89. Fatty acid synthase mediates high glucose‐induced EGFR activation in oral dysplastic keratinocytes vol.50, pp.9, 2014, https://doi.org/10.1111/jop.13235
  90. Diabetes and Colorectal Cancer Risk: A New Look at Molecular Mechanisms and Potential Role of Novel Antidiabetic Agents vol.22, pp.22, 2021, https://doi.org/10.3390/ijms222212409
  91. Diet and Obesity-Induced Methylglyoxal Production and Links to Metabolic Disease vol.34, pp.12, 2014, https://doi.org/10.1021/acs.chemrestox.1c00221
  92. Do diabetic complications influence cancer-related events in people with type 2 diabetes? A cohort approach vol.48, pp.2, 2014, https://doi.org/10.1016/j.diabet.2021.101289