DOI QR코드

DOI QR Code

Disease modeling and cell based therapy with iPSC: future therapeutic option with fast and safe application

  • Kim, Changsung (Department of Bioscience and Biotechnology, Sejong University)
  • Received : 2014.02.28
  • Accepted : 2014.03.19
  • Published : 2014.03.24

Abstract

Induced pluripotent stem cell (iPSC) technology has shown us great hope to treat various human diseases which have been known as untreatable and further endows personalized medicine for future therapy without ethical issues and immunological rejection which embryonic stem cell (hES) treatment has faced. It has been agreed that iPSCs knowledge can be harnessed from disease modeling which mimics human pathological development rather than trials utilizing conventional rodent and cell lines. Now, we can routinely generate iPSC from patient specific cell sources, such as skin fibroblast, hair follicle cells, patient blood samples and even urine containing small amount of epithelial cells. iPSC has both similarity and dissimilarity to hES. iPSC is similar enough to regenerate tissue and even full organism as ES does, however what we want for therapeutic advantage is limited to regenerated tissue and lineage specific differentiation. Depending on the lineage and type of cells, both tissue memory containing (DNA rearrangement/epigenetics) and non-containing iPSC can be generated. This makes iPSC even better choice to perform disease modeling as well as cell based therapy. Tissue memory containing iPSC from mature leukocytes would be beneficial for curing cancer and infectious disease. In this review, the benefit of iPSC for translational approaches will be presented.

Keywords

Acknowledgement

Supported by : Sejong University

References

  1. Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science 1998;282:1145-7. https://doi.org/10.1126/science.282.5391.1145
  2. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006;126:663-76. https://doi.org/10.1016/j.cell.2006.07.024
  3. Tachibana M, Amato P, Sparman M, et al. Human embryonic stem cells derived by somatic cell nuclear transfer. Cell 2013;153:1228-38. https://doi.org/10.1016/j.cell.2013.05.006
  4. Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007;131:861-72. https://doi.org/10.1016/j.cell.2007.11.019
  5. Obokata H, Wakayama T, Sasai Y, et al. Stimulus-triggered fate conversion of somatic cells into pluripotency. Nature 2014;505:641-7. https://doi.org/10.1038/nature12968
  6. Yamanaka S. Induced pluripotent stem cells: past, present, and future. Cell Stem Cell 2012;10:678-84. https://doi.org/10.1016/j.stem.2012.05.005
  7. Liao SM. Rescuing human embryonic stem cell research: the blastocyst transfer method. Am J Bioeth 2005;5:8-16. https://doi.org/10.1080/15265160500318746
  8. Kim S, Izpisua Belmonte JC. Pluripotency of male germline stem cells. Mol Cells 2011;32:113-21. https://doi.org/10.1007/s10059-011-1024-4
  9. Zhou T, Benda C, Dunzinger S, et al. Generation of human induced pluripotent stem cells from urine samples. Nat Protoc 2012;7:2080-9. https://doi.org/10.1038/nprot.2012.115
  10. Vitaloni M, Pulecio J, Bilic J, Kuebler B, Laricchia-Robbio L, Izpisua Belmonte JC. MicroRNAs contribute to induced pluripotent stem cell somatic donor memory. J Biol Chem 2014;289:2084-98. https://doi.org/10.1074/jbc.M113.538702
  11. Seki T, Yuasa S, Oda M, et al. Generation of induced pluripotent stem cells from human terminally differentiated circulating T cells. Cell Stem Cell 2010;7:11-4. https://doi.org/10.1016/j.stem.2010.06.003
  12. Choi SM, Liu H, Chaudhari P, et al. Reprogramming of EBV-immortalized B-lymphocyte cell lines into induced pluripotent stem cells. Blood 2011;118:1801-5. https://doi.org/10.1182/blood-2011-03-340620
  13. Huang K, Shen Y, Xue Z, et al. A panel of CpG methylation sites distinguishes human embryonic stem cells and induced pluripotent stem cells. Stem Cell Rep 2013;2:36-43.
  14. Marchetto MC, Yeo GW, Kainohana O, Marsala M, Gage FH, Muotri AR. Transcriptional signature and memory retention of human-induced pluripotent stem cells. PLoS One 2009;4:e7076. https://doi.org/10.1371/journal.pone.0007076
  15. Tesar PJ, Chenoweth JG, Brook FA, et al. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 2007;448:196-9. https://doi.org/10.1038/nature05972
  16. Hanna J, Cheng AW, Saha K, et al. Human embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCs. Proc Natl Acad Sci U S A 2010;107:9222-7. https://doi.org/10.1073/pnas.1004584107
  17. West FD, Terlouw SL, Kwon DJ, et al. Porcine induced pluripotent stem cells produce chimeric offspring. Stem Cells Dev 2010;19:1211-20. https://doi.org/10.1089/scd.2009.0458
  18. Hamanaka S, Yamaguchi T, Kobayashi T, et al. Generation of germline-competent rat induced pluripotent stem cells. PLoS One 2011;6:e22008. https://doi.org/10.1371/journal.pone.0022008
  19. Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature 2007;448:313-7. https://doi.org/10.1038/nature05934
  20. Morizane A, Doi D, Kikuchi T, et al. Direct comparison of autologous and allogeneic transplantation of iPSC-derived neural cells in the brain of a nonhuman primate. Stem Cell Rep 2013;1:283-92. https://doi.org/10.1016/j.stemcr.2013.08.007
  21. Guha P, Morgan JW, Mostoslavsky G, Rodrigues NP, Boyd AS. Lack of immune response to differentiated cells derived from syngeneic induced pluripotent stem cells. Cell Stem Cell 2013;12:407-12. https://doi.org/10.1016/j.stem.2013.01.006
  22. Emborg ME, Liu Y, Xi J, et al. Induced pluripotent stem cell-derived neural cells survive and mature in the nonhuman primate brain. Cell Rep 2013;3:646-50. https://doi.org/10.1016/j.celrep.2013.02.016
  23. Nazor KL, Altun G, Lynch C, et al. Recurrent variations in DNA methylation in human pluripotent stem cells and their differentiated derivatives. Cell Stem Cell 2012;10:620-34. https://doi.org/10.1016/j.stem.2012.02.013
  24. Eiges R, Urbach A, Malcov M, et al. Developmental study of fragile X syndrome using human embryonic stem cells derived from preimplantation genetically diagnosed embryos. Cell Stem Cell 2007;1:568-77. https://doi.org/10.1016/j.stem.2007.09.001
  25. Bradley CK, Scott HA, Chami O, et al. Derivation of Huntington's disease-affected human embryonic stem cell lines. Stem Cells Dev 2011;20:495-502. https://doi.org/10.1089/scd.2010.0120
  26. Kim C, Wong J, Wen J, et al. Studying arrhythmogenic right ventricular dysplasia with patient-specific iPSCs. Nature 2013;494:105-10. https://doi.org/10.1038/nature11799
  27. Park IH, Arora N, Huo H, et al. Disease-specific induced pluripotent stem cells. Cell 2008;134:877-86. https://doi.org/10.1016/j.cell.2008.07.041
  28. Wang H, Doering LC. Induced pluripotent stem cells to model and treat neurogenetic disorders. Neural Plast 2012;2012:346053.
  29. Yagi T, Ito D, Okada Y, et al. Modeling familial Alzheimer's disease with induced pluripotent stem cells. Hum Mol Genet 2011;20:4530-9. https://doi.org/10.1093/hmg/ddr394
  30. Israel MA, Yuan SH, Bardy C, et al. Probing sporadic and familial Alzheimer's disease using induced pluripotent stem cells. Nature 2012;482:216-20.
  31. Reinhardt P, Schmid B, Burbulla LF, et al. Genetic correction of a LRRK2 mutation in human iPSCs links parkinsonian neurodegeneration to ERK-dependent changes in gene expression. Cell Stem Cell 2013;12:354-67. https://doi.org/10.1016/j.stem.2013.01.008
  32. Kondo T, Asai M, Tsukita K, et al. Modeling Alzheimer's disease with iPSCs reveals stress phenotypes associated with intracellular A$\beta$ and differential drug responsiveness. Cell Stem Cell 2013;12:487-96. https://doi.org/10.1016/j.stem.2013.01.009
  33. Patel P, Mital S. Stem cells in pediatric cardiology. Eur J Pediatr 2013;172:1287-92. https://doi.org/10.1007/s00431-012-1920-4
  34. Terrenoire C, Wang K, Tung KW, et al. Induced pluripotent stem cells used to reveal drug actions in a long QT syndrome family with complex genetics. J Gen Physiol 2013;141:61-72. https://doi.org/10.1085/jgp.201210899
  35. Moreno JD, Clancy CE. Pathophysiology of the cardiac late Na current and its potential as a drug target. J Mol Cell Cardiol 2012;52:608-19. https://doi.org/10.1016/j.yjmcc.2011.12.003
  36. Hwang HS, Hasdemir C, Laver D, et al. Inhibition of cardiac Ca2+ release channels (RyR2) determines efficacy of class I antiarrhythmic drugs in catecholaminergic polymorphic ventricular tachycardia. Circ Arrhythm Electrophysiol 2011;4:128-35. https://doi.org/10.1161/CIRCEP.110.959916
  37. Grossmann V, Schnittger S, Poetzinger F, et al. High incidence of RAS signalling pathway mutations in MLL-rearranged acute myeloid leukemia. Leukemia 2013;27:1933-6. https://doi.org/10.1038/leu.2013.90
  38. Zou J, Mali P, Huang X, Dowey SN, Cheng L. Site-specific gene correction of a point mutation in human iPS cells derived from an adult patient with sickle cell disease. Blood 2011;118:4599-608. https://doi.org/10.1182/blood-2011-02-335554
  39. Zou J, Sweeney CL, Chou BK, et al. Oxidase-deficient neutrophils from X-linked chronic granulomatous disease iPS cells: functional correction by zinc finger nuclease-mediated safe harbor targeting. Blood 2011;117:5561-72. https://doi.org/10.1182/blood-2010-12-328161
  40. Raya A, Rodriguez-Piza I, Guenechea G, et al. Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature 2009;460:53-9. https://doi.org/10.1038/nature08129
  41. Ye Z, Zhan H, Mali P, et al. Human-induced pluripotent stem cells from blood cells of healthy donors and patients with acquired blood disorders. Blood 2009;114:5473-80. https://doi.org/10.1182/blood-2009-04-217406
  42. Sebastiano V, Maeder ML, Angstman JF, et al. In situ genetic correction of the sickle cell anemia mutation in human induced pluripotent stem cells using engineered zinc finger nucleases. Stem Cells 2011;29:1717-26. https://doi.org/10.1002/stem.718
  43. Churko JM, Burridge PW, Wu JC. Generation of human iPSCs from human peripheral blood mononuclear cells using non-integrative Sendai virus in chemically defined conditions. Methods Mol Biol 2013;1036:81-8. https://doi.org/10.1007/978-1-62703-511-8_7
  44. Mack AA, Kroboth S, Rajesh D, Wang WB. Generation of induced pluripotent stem cells from CD34+ cells across blood drawn from multiple donors with non-integrating episomal vectors. PLoS One 2011;6:e27956. https://doi.org/10.1371/journal.pone.0027956
  45. Gandre-Babbe S, Paluru P, Aribeana C, et al. Patient-derived induced pluripotent stem cells recapitulate hematopoietic abnormalities of juvenile myelomonocytic leukemia. Blood 2013;121:4925-9. https://doi.org/10.1182/blood-2013-01-478412
  46. Hirata S, Takayama N, Jono-Ohnishi R, et al. Congenital amegakaryocytic thrombocytopenia iPS cells exhibit defective MPL-mediated signaling. J Clin Invest 2013;123:3802-14. https://doi.org/10.1172/JCI64721
  47. Carver-Moore K, Broxmeyer HE, Luoh SM, et al. Low levels of erythroid and myeloid progenitors in thrombopoietin-and c-mpl-deficient mice. Blood 1996;88:803-8.
  48. Doulatov S, Notta F, Laurenti E, Dick JE. Hematopoiesis: a human perspective. Cell Stem Cell 2012;10:120-36. https://doi.org/10.1016/j.stem.2012.01.006
  49. Kaufman DS. Toward clinical therapies using hematopoietic cells derived from human pluripotent stem cells. Blood 2009;114:3513-23. https://doi.org/10.1182/blood-2009-03-191304
  50. Kaiser J. Gene therapy. Seeking the cause of induced leukemias in X-SCID trial. Science 2003;299:495. https://doi.org/10.1126/science.299.5606.495
  51. Kennedy M, D'Souza SL, Lynch-Kattman M, Schwantz S, Keller G. Development of the hemangioblast defines the onset of hematopoiesis in human ES cell differentiation cultures. Blood 2007;109:2679-87.
  52. Kaufman DS, Hanson ET, Lewis RL, Auerbach R, Thomson JA. Hematopoietic colony-forming cells derived from human embryonic stem cells. Proc Natl Acad Sci U S A 2001;98:10716-21. https://doi.org/10.1073/pnas.191362598
  53. Galic Z, Kitchen SG, Kacena A, et al. T lineage differentiation from human embryonic stem cells. Proc Natl Acad Sci U S A 2006;103:11742-7. https://doi.org/10.1073/pnas.0604244103
  54. Olivier EN, Qiu C, Velho M, Hirsch RE, Bouhassira EE. Large-scale production of embryonic red blood cells from human embryonic stem cells. Exp Hematol 2006;34:1635-42. https://doi.org/10.1016/j.exphem.2006.07.003
  55. Wang L, Li L, Menendez P, Cerdan C, Bhatia M. Human embryonic stem cells maintained in the absence of mouse embryonic fibroblasts or conditioned media are capable of hematopoietic development. Blood 2005;105:4598-603. https://doi.org/10.1182/blood-2004-10-4065
  56. Knorr DA, Ni Z, Hermanson D, et al. Clinical-scale derivation of natural killer cells from human pluripotent stem cells for cancer therapy. Stem Cells Transl Med 2013;2:274-83. https://doi.org/10.5966/sctm.2012-0084
  57. Woll PS, Grzywacz B, Tian X, et al. Human embryonic stem cells differentiate into a homogeneous population of natural killer cells with potent in vivo antitumor activity. Blood 2009;113:6094-101. https://doi.org/10.1182/blood-2008-06-165225
  58. Ledran MH, Krassowska A, Armstrong L, et al. Efficient hematopoietic differentiation of human embryonic stem cells on stromal cells derived from hematopoietic niches. Cell Stem Cell 2008; 3:85-98. https://doi.org/10.1016/j.stem.2008.06.001
  59. Zhan X, Dravid G, Ye Z, et al. Functional antigen-presenting leucocytes derived from human embryonic stem cells in vitro. Lancet 2004;364:163-71. https://doi.org/10.1016/S0140-6736(04)16629-4
  60. Tian X, Woll PS, Morris JK, Linehan JL, Kaufman DS. Hematopoietic engraftment of human embryonic stem cell-derived cells is regulated by recipient innate immunity. Stem Cells 2006;24:1370-80. https://doi.org/10.1634/stemcells.2005-0340
  61. Hanna J, Wernig M, Markoulaki S, et al. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 2007;318:1920-3. https://doi.org/10.1126/science.1152092
  62. Carpenter L, Malladi R, Yang CT, et al. Human induced pluripotent stem cells are capable of B-cell lymphopoiesis. Blood 2011;117:4008-11. https://doi.org/10.1182/blood-2010-08-299941
  63. Staerk J, Dawlaty MM, Gao Q, et al. Reprogramming of human peripheral blood cells to induced pluripotent stem cells. Cell Stem Cell 2010;7:20-4. https://doi.org/10.1016/j.stem.2010.06.002
  64. Hanna J, Markoulaki S, Schorderet P, et al. Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell 2008;133:250-64. https://doi.org/10.1016/j.cell.2008.03.028
  65. Loh YH, Hartung O, Li H, et al. Reprogramming of T cells from human peripheral blood. Cell Stem Cell 2010;7:15-9. https://doi.org/10.1016/j.stem.2010.06.004
  66. Ding Q, Lee YK, Schaefer EA, et al. A TALEN genome-editing system for generating human stem cell-based disease models. Cell Stem Cell 2013;12:238-51. https://doi.org/10.1016/j.stem.2012.11.011
  67. Gaj T, Gersbach CA, Barbas CF 3rd. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 2013;31:397-405. https://doi.org/10.1016/j.tibtech.2013.04.004
  68. Maeder ML, Linder SJ, Cascio VM, Fu Y, Ho QH, Joung JK. CRISPR RNA-guided activation of endogenous human genes. Nat Methods 2013;10:977-9. https://doi.org/10.1038/nmeth.2598
  69. Joung JK, Sander JD. TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol 2013;14:49-55.
  70. Ramachandra CJ, Shahbazi M, Kwang TW, et al. Efficient recombinase-mediated cassette exchange at the AAVS1 locus in human embryonic stem cells using baculoviral vectors. Nucleic Acids Res 2011;39:e107. https://doi.org/10.1093/nar/gkr409

Cited by

  1. Amyotrophic Lateral Sclerosis - Cell Based Therapy and Novel Therapeutic Development vol.23, pp.3, 2014, https://doi.org/10.5607/en.2014.23.3.207
  2. Applications of Induced Pluripotent Stem Cells in Studying the Neurodegenerative Diseases vol.2015, pp.None, 2014, https://doi.org/10.1155/2015/382530
  3. Recent trends in the gene therapy of β-thalassemia vol.6, pp.None, 2014, https://doi.org/10.2147/jbm.s46256
  4. TRIM32 modulates pluripotency entry and exit by directly regulating Oct4 stability vol.5, pp.None, 2014, https://doi.org/10.1038/srep13456
  5. Restoration of Progranulin Expression Rescues Cortical Neuron Generation in an Induced Pluripotent Stem Cell Model of Frontotemporal Dementia vol.4, pp.1, 2015, https://doi.org/10.1016/j.stemcr.2014.12.001
  6. iPSC technology-Powerful hand for disease modeling and therapeutic screen vol.48, pp.5, 2015, https://doi.org/10.5483/bmbrep.2015.48.5.100
  7. Tapping Stem Cells to Target AMD: Challenges and Prospects vol.4, pp.2, 2015, https://doi.org/10.3390/jcm4020282
  8. Rapid and Efficient Generation of Transgene-Free iPSC from a Small Volume of Cryopreserved Blood vol.11, pp.4, 2014, https://doi.org/10.1007/s12015-015-9586-8
  9. What Does Genetics Tell Us About Age-Related Macular Degeneration? vol.1, pp.1, 2014, https://doi.org/10.1146/annurev-vision-082114-035609
  10. Hematopoietic stem cell expansion and generation: the ways to make a breakthrough vol.50, pp.4, 2015, https://doi.org/10.5045/br.2015.50.4.194
  11. Use of genome-editing tools to treat sickle cell disease vol.135, pp.9, 2014, https://doi.org/10.1007/s00439-016-1688-0
  12. Urine-derived induced pluripotent stem cells as a modeling tool to study rare human diseases vol.5, pp.3, 2016, https://doi.org/10.5582/irdr.2016.01062
  13. Induced Pluripotent Stem Cells: Next Generation Cells for Tissue Regeneration vol.9, pp.4, 2016, https://doi.org/10.4236/jbise.2016.94017
  14. Human induced pluripotent stem cells for monogenic disease modelling and therapy vol.8, pp.4, 2016, https://doi.org/10.4252/wjsc.v8.i4.118
  15. PI3K/AKT Signaling Pathway Is Essential for Survival of Induced Pluripotent Stem Cells vol.11, pp.5, 2014, https://doi.org/10.1371/journal.pone.0154770
  16. Rethinking therapeutic strategies in cancer: Wars, fields, anomalies and monsters vol.14, pp.4, 2014, https://doi.org/10.1057/sth.2016.4
  17. Zelltherapie am Augenhintergrund - gestern, heute, morgen vol.29, pp.2, 2014, https://doi.org/10.1007/s11825-017-0140-8
  18. Physico-electrochemical Characterization of Pluripotent Stem Cells during Self-Renewal or Differentiation by a Multi-modal Monitoring System vol.8, pp.5, 2014, https://doi.org/10.1016/j.stemcr.2017.03.021
  19. Transcriptome Analysis of Induced Pluripotent Stem Cell (iPSC)-derived Pancreatic β-like Cell Differentiation vol.26, pp.8, 2017, https://doi.org/10.1177/0963689717720281
  20. A preliminary analysis of volatile metabolites of human induced pluripotent stem cells along the in vitro differentiation vol.7, pp.None, 2014, https://doi.org/10.1038/s41598-017-01790-5
  21. A Tissue Engineered Blood Vessel Model of Hutchinson-Gilford Progeria Syndrome Using Human iPSC-derived Smooth Muscle Cells vol.7, pp.None, 2017, https://doi.org/10.1038/s41598-017-08632-4
  22. iPSC-Derived Endothelial Cells Affect Vascular Function in a Tissue-Engineered Blood Vessel Model of Hutchinson-Gilford Progeria Syndrome vol.14, pp.2, 2014, https://doi.org/10.1016/j.stemcr.2020.01.005
  23. Induced Pluripotency: A Powerful Tool for In Vitro Modeling vol.21, pp.23, 2020, https://doi.org/10.3390/ijms21238910
  24. Blood-Brain Barrier and Neurodegenerative Diseases-Modeling with iPSC-Derived Brain Cells vol.22, pp.14, 2014, https://doi.org/10.3390/ijms22147710