DOI QR코드

DOI QR Code

Materials and Characteristics of Emerging Transparent Electrodes

차세대 투명전극 소재의 종류와 특성

  • Chung, Moon Hyun (Department of Chemical & Biomolecular Engineering, Yonsei University) ;
  • Kim, Seyul (Department of Chemical & Biomolecular Engineering, Yonsei University) ;
  • Yoo, Dohyuk (Department of Chemical & Biomolecular Engineering, Yonsei University) ;
  • Kim, Jung Hyun (Department of Chemical & Biomolecular Engineering, Yonsei University)
  • 정문현 (연세대학교 화공.생명공학과) ;
  • 김세열 (연세대학교 화공.생명공학과) ;
  • 유도혁 (연세대학교 화공.생명공학과) ;
  • 김중현 (연세대학교 화공.생명공학과)
  • Received : 2014.02.19
  • Accepted : 2014.04.16
  • Published : 2014.06.10

Abstract

Flexibility of a transparent device has been required in accordance with miniaturization and mobilization needs in recent industry. The most representative material used as a transparent electrode is indium tin oxide (ITO). However, a couple of disadvantages of ITO are the exhaustion of natural resource of indium and its inflexibility due to inorganic substance. To overcome the limit of ITO, a variety of alternative materials have been researched on development of transparent electrodes and its properties through composite materials. In this review, we classify some of emerged materials with their general studies.

정보 통신 분야의 발전에 따라 기존의 전자 기기들은 평면성을 벗어나 투명 유연하고 깨지지 않는 특성이 요구되고 있다. 이러한 부가적인 특성을 갖춘 기기들의 제조를 위해서는 전극의 투명성과 유연성을 동시에 갖고 있어야 하지만, 현재 가장 대표적으로 이용되는 투명전극인 ITO (Indium Tin Oxide)는 유연하지 못하다는 단점과 자원적인 한계를 갖고 있다. 이에 따라 ITO의 한계를 극복하기 위해 다양한 물질들을 이용한 대체 재료 개발이 활발히 연구되고 있으며 대체 물질들의 복합화를 통해 더 향상된 물성을 발현시키기 위한 연구가 진행되고 있다. 본 총설에서는 ITO의 한계를 극복하고 투명전극으로서의 응용 가능한 대체 물질들에 대한 연구 현황을 정리하였다.

Keywords

References

  1. J. K. Wassei and R. B. Kaner, Graphene a promising transparent conductor, Materialstoday, 13, 52-59 (2010).
  2. K.-H. Lee, S.-M. Kim, J. Jeong, Y. Pak, H. Song, J. Park, K.-H. Lim, J.-H. Kim, Y. S. Kim, H. C. Ko, I. K. Kwon, and G.-Y. Jung, All-solution-processed transparent thin film transistor and its application to liquid crystals driving, Adv. Mater., 25, 3209-3214 (2013). https://doi.org/10.1002/adma.201300084
  3. K. Nakashima and Y. Kumahara, Effect of tin oxide dispersion on nodule formation in ITO Sputtering, Vacuum, 66, 221-226 (2002). https://doi.org/10.1016/S0042-207X(02)00145-8
  4. N. Manavizadeh, F. A. Boroumand, E. A. Soleimani, F. Raissi, S. Bagherzadeh, A. Khodayari, and M. A. Rasouil, Influence of substrates on the structural and morphological properties of RF sputtered ITO thin films for photovoltaic application, Thin Solid Films, 517, 2324-2327 (2009). https://doi.org/10.1016/j.tsf.2008.11.027
  5. D. S. Hecht, L. Hu, and G. Irvin, Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures, Adv. Mater., 23, 1482-1513 (2011). https://doi.org/10.1002/adma.201003188
  6. K. A. Sierros, N. J. Morris, K. Ramji, and D. R. Cairns, Stress-corrosion cracking of indium tin oxide coated polyethylene terephthalate for flexible optoelectronic devices, Thin Solid Films, 517, 2590-2595 (2009). https://doi.org/10.1016/j.tsf.2008.10.031
  7. G. A. Potoczny, T. S. Bejitual, J. S. Abell, K. A. Sierros, D. R. Cairns, and S. N. Kukureka, Flexibility and electrical stability of polyester- based device electrodes under monotonic and cyclic buckling conditions, Thin Solid Films, 528, 205-212 (2013). https://doi.org/10.1016/j.tsf.2012.09.082
  8. L. Hu, H. S. Kim, J. Y. Lee, P. Peumans, and Y. Cui, Scalable coating and properties of transparent, flexible, silver nanowire electrodes, ACS Nano, 4, 2955-2963 (2010). https://doi.org/10.1021/nn1005232
  9. A. B. V. K. Kumar, C. W. Bae, L. Piao, and S.-H. Kim, Silver nanowire based flexible electrodes with improved properties: high conductivity, transparency, adhesion and low haze, Materials Research Bulletin, 48, 2944-2949 (2013). https://doi.org/10.1016/j.materresbull.2013.04.035
  10. D. Y. Choi, H. W. Kang, H. J. Sung, and S. S. Kim, Annealing-free, flexible silver nanowire-polymer composite electrodes via a continuous two-step spray-coating method, Nanoscale, 5, 977-983 (2013). https://doi.org/10.1039/c2nr32221h
  11. R. Zhu, C.-H. Chung, K. C. Cha, W. Yang, Y. B. Zheng, H. Zhou, T.-B. Song, C.-C Chen, P. S. Weiss, G. Li, and Y. Yang, Fused silver nanowires with metal oxide nanoparticles and organic polymers for highly transparent conductors, ACS Nano, 5, 9877-9882 (2011). https://doi.org/10.1021/nn203576v
  12. M. K. Song, D. S. You, K. Lim, S. Park, S. Jung, C. S. Kim, D.-H. Kim, D.-G. Kim, J.-K. Kim, J. Park, Y.-C. Kang, J. Heo, S.-H. Jin, J. H. Park, and J.-W. Kang, Highly efficient and bendable organic solar cells with solution-processed silver nanowire electrodes, Adv. Funct. Mater., 23, 4177-4184 (2013). https://doi.org/10.1002/adfm.201202646
  13. K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, Ultrahigh electron mobility in suspended graphene, Solid State Communications, 146, 351-355 (2008). https://doi.org/10.1016/j.ssc.2008.02.024
  14. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science, 306, 666-669 (2004). https://doi.org/10.1126/science.1102896
  15. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes, Nature, 457, 706-710 (2009). https://doi.org/10.1038/nature07719
  16. S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. O. zyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, Roll-to-roll production of 30-inch graphene films for transparent electrodes, Nature nanotechnology, 5, 574-578 (2010). https://doi.org/10.1038/nnano.2010.132
  17. S. Pang, Y. Hernandez, X. Feng, and K. Mullen, Graphene as transparent electrode material for organic electronics, Adv. Mater., 23, 2779-2795 (2011). https://doi.org/10.1002/adma.201100304
  18. D. S. Hecht, A. M. Heintz, R. S. Lee, L. Hu, B. Moore, C. Cucksey, and S. Risser, High conductivity transparent carbon nanotube films deposited from superacid, Nanotechnology, 22, 075201 (2011). https://doi.org/10.1088/0957-4484/22/7/075201
  19. J. Li, L. Hu, L. Wang, Y. Zhou, G. Gruner, and T. J. Marks, Organic light-emitting diodes having carbon nanotube anodes, Nano Lett., 6, 2472-2477 (2006). https://doi.org/10.1021/nl061616a
  20. L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, J. R. Reynolds, Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future, Adv. Mater., 12, 481-494 (2000). https://doi.org/10.1002/(SICI)1521-4095(200004)12:7<481::AID-ADMA481>3.0.CO;2-C
  21. J. Ouyang, "Secondary doping" methods to significantly enhance the conductivity of PEDOT : PSS for its application as transparent electrode of optoelectronic devices, Displays, 34, 423-436 (2013). https://doi.org/10.1016/j.displa.2013.08.007
  22. D. Alemu, H.-Y. Wei, K.-C. Ho, and C.-W. Chu, Highly conductive PEDOT:PSS electrode by simple film treatment with methanol for ITO-free polymer solar cells, Energy Environ. Sci., 5, 9662-9671 (2012). https://doi.org/10.1039/c2ee22595f
  23. C. Badre, L. Marquant, A. M. Alsayed, and L. A. Hough, Highly conductive Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) films using 1-Ethyl-3-methylimidazolium tetracyanoborate ionic liquid, Adv. Funct. Mater., 22, 2723-2727 (2012). https://doi.org/10.1002/adfm.201200225
  24. N. Kim, S. Kee, S. H. Lee, B. H. Lee, Y. H. Kahng, Y.-R. Jo, B.-J. Kim, and K. Lee, Highly conductive PEDOT:PSS nanofibrils induced by solution-processed crystallization, Adv. Mater., 26, 2268-2272 (2014). https://doi.org/10.1002/adma.201304611
  25. Y. Xia, K. Sun, and J. Ouyang, Solution-processed metallic conducting polymer films as transparent electrode of optoelectronic devices, Adv. Mater., 24, 2436-2440 (2012). https://doi.org/10.1002/adma.201104795
  26. Q. Pei, G. Zuccarello, M. Ahlskog, and O. Inganas, Electrochromic and highly stable poly(3,4-ethylenedioxythiophene) switches between opaque blue-black and transparent sky blue, Polymer, 35, 1347-1351 (1994). https://doi.org/10.1016/0032-3861(94)90332-8
  27. A. M. Nardes, M. Kemerink, M. M. de Kok, E. Vinken, K. Maturova, and R. A. J. Janssen, Conductivity, work function, and environmental stability of PEDOT:PSS thin films treated with sorbitol, Organic electronics, 9, 727-734 (2008). https://doi.org/10.1016/j.orgel.2008.05.006
  28. J.-H. Yun and J. Kim, Double transparent conducting oxide films for photoelectric devices, Materials Letters, 70, 4-6 (2012). https://doi.org/10.1016/j.matlet.2011.11.053
  29. H.-W. Wu and C.-H. Chu, Structural and optoelectronic properties of AZO/Mo/AZO thin films prepared by rf magnetron sputtering, Materials Letters, 105, 65-67 (2013). https://doi.org/10.1016/j.matlet.2013.04.017
  30. F. Li, Y. Zhang, C. Wu, Z. Lin, B. Zhang, and T. Guo, Improving efficiency of organic light-emitting diodes fabricated utilizing AZO/Ag/AZO multilayer electrode Vacuum, 86, 1895-1897 (2012). https://doi.org/10.1016/j.vacuum.2012.05.028
  31. M.-S. Lee, K. Lee, S.-Y. Kim, H. Lee, J. Park, K.-H. Choi, H.-K. Kim, D.-G. Kim, D.-Y. Lee, S. W. Nam, and J.-U. Park, High-performance, transparent, and stretchable electrodes using graphene-metal nanowire hybrid structures, Nano Lett., 13, 2814-2821 (2013). https://doi.org/10.1021/nl401070p
  32. J. Lee, P. Lee, H. B. Lee, S. Hong, I. Lee, J. Yeo, S. S. Lee, T.-S. Kim, D. Lee, and S. H. Ko, Room-temperature nanosoldering of a very long metal nanowire network by conducting-polymer-sssisted joining for a flexible touch-panel application, Adv. Funct. Mater., 23, 4171-4176 (2013). https://doi.org/10.1002/adfm.201203802
  33. D. Yoo, J. Kim, and J. H. Kim, Direct synthesis of highly conductive PEDOT:PSS/graphene composites and their applications in energy harvesting systems, Nano Res., DOI: 10.1007/s12274-014-0433-z.
  34. Y.-K. Kim and D.-H. Min, Durable large-area thin films of graphene/carbon nanotube double layers as a transparent electrode, Langmuir, 25, 11302-11306 (2009). https://doi.org/10.1021/la9029744
  35. S. De, P. E. Lyons, S. Sorel, E. M. Doherty, P. J. King, W. J. Blau, P. N. Nirmalraj, J. J. Boland, V. Scardaci, J. Joimel, and J. N. Coleman, Transparent, flexible, and highly conductive thin films based on polymer-nanotube composites, ACS Nano, 3, 714-720 (2009). https://doi.org/10.1021/nn800858w
  36. X. Ho, H. Lu, W. Liu, J. N. Tey, C. K. Cheng, E. Kok, and J. Wei, Electrical and optical properties of hybrid transparent electrodes that use metal grids and graphene films, J. Mater. Res., 28, 620-626 (2013). https://doi.org/10.1557/jmr.2012.399

Cited by

  1. 라만 분광실험을 이용한 전기전도성 PEDOT:PSS 박막에 대한 이온성 액체의 영향 연구 vol.42, pp.1, 2018, https://doi.org/10.7317/pk.2018.42.1.80
  2. 은 박막이 첨가된 전기방사법으로 제작한 PCL/MWCNTs 나노섬유의 전기적 특성 vol.31, pp.4, 2014, https://doi.org/10.4313/jkem.2018.31.4.238
  3. 투명 전극을 적용한 유리 유전체 커패시티브 커플링 무선 전력 전송에 관한 연구 vol.23, pp.4, 2018, https://doi.org/10.6113/tkpe.2018.23.4.286
  4. 공정압력이 SiO2 버퍼층을 갖는 PES 기판위에 증착한 ITZO 박막의 전기적 및 광학적 특성에 미치는 영향 vol.14, pp.5, 2014, https://doi.org/10.13067/jkiecs.2019.14.5.887
  5. Review: Sensors for Biosignal/Health Monitoring in Electronic Skin vol.13, pp.15, 2021, https://doi.org/10.3390/polym13152478