DOI QR코드

DOI QR Code

Indoor Air Quality Pollution of PM2.5 and Associated Trace Elements Affected by Environmental Tobacco Smoke

환경담배연기로 인한 실내공기 중 PM2.5 및 미량성분 오염 특성

  • Lim, Jong-Myoung (Environmental Radioactivity Assessment Team, Korea Atomic Energy Research Institute) ;
  • Lee, Jin-Hong (Department of Environmental Engineering, Chungnam National University)
  • 임종명 (한국원자력연구원 환경방사능평가팀) ;
  • 이진홍 (충남대학교 환경공학과)
  • Received : 2013.09.02
  • Accepted : 2014.04.28
  • Published : 2014.05.31

Abstract

Environmental tobacco smoke (ETS) samples were collected separately in mainstream and side-stream smoke using a self-designed smoking machine, and a total 40 of PM2.5 was collected with low volume air sampler at indoor environments with and without ETS in Daejeon, Korea. About 20 trace elements including toxic metals like As, Cr, Mn, Se, V, and Zn were determined in PM2.5 and ETS samples by instrumental neutron activation analysis (INAA). It is found that the emission factors of K, Cl, Na, and Al were much higher than those of toxic elements for both mainstream and side-stream smoke. The average concentration of PM2.5 was enriched by 1.5 times at smoking area ($58.7{\pm}18.1{\mu}g/m^3$) than at smoking free area ($38.6{\pm}12.7{\mu}g/m^3$). The concentration ratio of each element between smoking and smoking free area were ranged from 1.1 to 6.0 except Cu (1.0); especially, Ce (6.0), La (5.2), K (2.3), and Co (2.0) showed higher ratio, which suggests that the ETS is one of the possible increasing factors of PM2.5 and elemental concentration at indoor environment.

본 연구는 흡연기작을 모사한 시료채취장비를 이용하여 환경담배연기를 주류연기와 비주류연기로 구분하여 채취하고, 환경담배연기 중의 미량원소성분을 중성자방사화분석을 이용하여 분석하였다. 또한, 실내공기 중 PM2.5를 집중적으로 채취하고 인체 영향이 큰 As, Cr, Mn, Se, V, Zn를 비롯한 약 20종의 미량원소를 분석하여 그 화학적 특성을 파악하며 환경담배연기가 실내공기질에 미치는 영향을 평가하고자 하였다. 담배개피 당 미량원소 발생량은 Cl, K, Na 등을 제외한 대부분의 원소에서 비주류연기에서 더 높게 나타났고, K, Cl, Na, Al의 발생량은 개피 당 $1{\mu}g$ 이상으로 가장 많았고, Br, Fe, Zn도 높은 배출량을 보여 외부오염원과 독립적으로 실내 환경에서의 Br, Cl, Fe, K, Zn의 농도 증가에 환경담배연기가 기여하는 것으로 판단된다. PM2.5의 농도는 흡연 사무실은 $58.7{\pm}18.1{\mu}g/m^3$인 반면, 비흡연 사무실은 $38.6{\pm}12.7{\mu}g/m^3$를 보여 ETS에 의해 흡연 사무실에서 1.5배 정도 높게 나타났고, 미량원소의 농도비는 Cu (1.0)를 제외한 모든 원소에서 농도비의 평균값이 1.1~6.0으로 흡연 사무실의 원소 농도가 비흡연 사무실의 원소 농도보다 높게 나타났다. 이러한 결과는 환경담배연기가 실내 공기 중 PM2.5와 미량원소의 농도 증가의 한 원인인 것을 보여주고 있다.

Keywords

References

  1. Natusch, D. F. S., Wallace, J. R. and Evans, Jr. C. A., "Toxic trace elements: preferential concentration in respirable particles," Science, 183, 202-204(1974). https://doi.org/10.1126/science.183.4121.202
  2. Dockery, D. W. and Pope, III C. A., "Acute respiratory effects of particulate air pollution," Annu. Rev. Publ. Health, 15, 107-132(1994). https://doi.org/10.1146/annurev.pu.15.050194.000543
  3. Nam, B. H., Hwang, I. J. and Kim, D. S., "Pattern Classification of PM-10 in the Indoor Environment Using Disjoint Principal Component Analysis," J. Kor. Soc. Atmos. Environ., 18, 25-37(2002).
  4. Larson, T., Gould, T., Simpson, C., Liu, L.-J. S., Claiborn, C. and Lewtas, J., "Source apportionment of indoor, outdoor, and personal PM2.5 in Seattle, Washington, using positive matrix factorization," J. Air Waste Manage., 54, 1175-1187(2004). https://doi.org/10.1080/10473289.2004.10470976
  5. Geller, M. D., Chang, M., Sioutas, C., Ostro, B. D. and Lipsett, M. J. "Indoor/outdoor relationship and chemical composition of fine and coarse particles in the southern California deserts," Atmos. Environ., 36, 1099-1110(2002). https://doi.org/10.1016/S1352-2310(01)00340-5
  6. Olson, D. A., Turlington, J., Duvall, R. M., McDow, S. R., Stevens, C. D. and Williams, R., "Indoor and outdoor concentrations of organic and inorganic molecular markers: Source apportionment of PM2.5 using low-volume samples," Atmos. Environ., 42, 1742-1751(2008). https://doi.org/10.1016/j.atmosenv.2007.11.035
  7. Lim, J. M., Jeong, J. H., Lee, J. H., Moon, J. H., Chung, Y. S. and Kim, K. H. "The analysis of PM2.5 and associated elements and their indoor/outdoor pollution status in an urban area," Indoor Air, 21, 145-155(2011). https://doi.org/10.1111/j.1600-0668.2010.00691.x
  8. U. S. EPA, "Respiratory Health Effects of Passive Smoking: Lung Cancer and Other Disorders," EPA/600/6-90/006F(1992).
  9. Adams, J. D., O'Mara-Adams, K. J. and Hoffmann, D., "Toxic and carcinogenic agents in diluted mainstream smoke and side-stream smoke of different types of cigarettes," Carcinogenesis, 8, 729-731(1987). https://doi.org/10.1093/carcin/8.5.729
  10. Lansberger, S. and Wu, D., "The impact of heavy metals from environmental tobacco smoke on indoor air quality as determined by Compton suppression neutron activation analysis," Sci. Total Environ., 173, 323-337(1995).
  11. U. S. EPA, "Health Effects of Exposure to Environmental Tobacco Smoke," Final report(1997).
  12. Zhou, R., Li, S., Zhou Y. and Haug, A., "Comparison of environmental tobacco smoke concentrations and mutagenicity for several indoor environments," Mutat. Res., 465, 191-200(2000). https://doi.org/10.1016/S1383-5718(99)00229-6
  13. Nazaroff, W. W., Hung, W.-Y., Sasse, A. G. B. M. and Gadgil, A. J., "Predicting regional lung deposition of environmental tobacco smoke particles," Aerosol Sci. Tech., 19, 243-254(1993). https://doi.org/10.1080/02786829308959633
  14. Hussein, T., Glytsos, T., Ondracek, J., Dohanyosova, P., Zdimald, V., Hameria, K., Lazaridisc, M., Smolikd, J. and Kulmala, M., "Particle size characterization and emission rates during indoor activities in a house," Atmos. Environ., 40, 4285-4307(2006). https://doi.org/10.1016/j.atmosenv.2006.03.053
  15. Ott, W., Switzer, P. and Robinson, J., "Particle concentrations inside a tavern before and after prohibition of smoking: Evaluating the performance of an indoor air quality model," J. Air Waste Manage., 46, 1120-1134(1996). https://doi.org/10.1080/10473289.1996.10467548
  16. Wallace, L., "Indoor particles: a review," J. Air Waste Manage., 46, 98-126(1996). https://doi.org/10.1080/10473289.1996.10467451
  17. Slezakova, K., Pereira, M. C. and Alvim-Ferraz, M. C., "Influence of tobacco smoke on the elemental composition of indoor particles of different sizes," Atmos. Environ., 43, 486-493(2009). https://doi.org/10.1016/j.atmosenv.2008.10.017
  18. Bohlandt, A., Schierl, R., Diemer, J., Koch, C., Bolte, G., Kiranoglu, M., Fromme, H. and Nowak, D., "High concentrations of cadmium, cerium and lanthanum in indoor air due to environmental tobacco smoke," Sci. Total Environ., 414, 738-741(2012). https://doi.org/10.1016/j.scitotenv.2011.11.017
  19. WHO, "Air Quality Guidelines for Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide," WHO/SDE/PHE/OEH/06.22(2006).
  20. National Research Council, "Environmental Tobacco Smoke: Measuring Exposures and Assessing Health Effects, Washington DC," National Academy Press(1986).
  21. Shin, D. C., Lee, H. M., Kim, J. M. and Chung, Y., "A Study on the Indoor Air Pollution Level and Its Health Significance in Working and Living Spaces," J. KAPRA, 6, 73-84(1990).
  22. Baek, S. O., Kim, Y. S. and Perry, R., "Indoor air quality in homes, office, and restaurants in Korea urban area-indoor/ outdoor relationships," Atmos. Environ., 31, 529-544(1997). https://doi.org/10.1016/S1352-2310(96)00215-4
  23. Baek, S. O. and Park, S. K., "Measurement of Environmental Tobacco Smoke in the Air of Offices in Urban Areas," J. Kor. Soc. Atmos. Environ., 20, 715-727(2004).
  24. Repace, J. L. and Lowery, A. H., "Indoor air pollution, tobacco smoke, and public health," Science, 208, 464-472(1980). https://doi.org/10.1126/science.7367873
  25. Ballard, J. A., "Health effects of passive smoking," Professional Saf., pp. 28-32(1992).
  26. Paoletti, L., De Berardis, B., Arrizza, L. and Granato, V., "Influence of tobacco smoke on indoor PM10 particulate matter chracteristics," Atmos. Environ., 40, 3269-3280(2006). https://doi.org/10.1016/j.atmosenv.2006.01.047
  27. Quann, R. J., Neville, M., Janghorbani, M., Mims, C. A. and Sarofim, A. F., "Mineral matter and trace-element vaporization in a laboratory-pulverized coal combustion system," Environ. Sci. Technol., 16, 776-781(1982). https://doi.org/10.1021/es00105a009
  28. Landsberger, S., "Trace element determination of airborne particles by neutron activation analysis," Elemental Analysis of Airborne Particles, Gordon and Breach, Malaysia (1999).
  29. Salma, I. and Zemplen-Papp, "Instrumental neutron activation analysis for studying size-fractionated aerosols," Nucl. Instrum. Meth. Phys. Reser., A435, 462-474(1999).
  30. Tian, W., "Reactor Neutron Activation Analysis of Airborne Particulate Matter," NAHRES-53, IAEA, Vienna(2000).
  31. Lansberger, S. and Wu, D., "Determination of airborne cadmium in environmental tobacco smoke by instrumental neutron activation analysis with a Compton suppression system," Anal. Chem., 65, 1506-1509(1993). https://doi.org/10.1021/ac00059a004
  32. Chao, C. Y. and Wong, K., "Residential indoor PM10 and PM2.5 in Hong Kong and elemental composition," Atmos. Environ., 36, 265-277(2002). https://doi.org/10.1016/S1352-2310(01)00411-3
  33. Yli-Tuomi, T., Venditte, L., Hpoke, P. K., Basunia, M. S., Landsberger, S., Viisanen, Y. and Paatero, J., "Composition of the Finnish Arctic aerosol: collection and analysis of historic filter samples," Atmos. Environ., 37, 2355-2364(2003). https://doi.org/10.1016/S1352-2310(03)00164-X
  34. Begum, B. A., Kim, E., Biswas, S. K. and Hopke, P. K., "Investigation of sources of atmospheric aerosol at urban and semi-urban areas in Bangladesh," Atmos. Environ., 38, 3025-3038(2004). https://doi.org/10.1016/j.atmosenv.2004.02.042
  35. Hanninen, O. O., Lebret, E., Ilacqua, V., Katsouyanni, K., Kunzli, N., Sram, R. J. and Jantunen, M., "Infiltration of ambient PM2.5 and levels of indoor generated non-ETS PM5 in residences of four European cities," Atmos. Environ. 38, 6411-6423(2004). https://doi.org/10.1016/j.atmosenv.2004.07.015
  36. Gemenetzis, P., Moussas, P., Arditsoglou, A. and Samara, C. "Mass concentration and elemental composition of indoor PM2.5 and PM10 in university rooms in Thessaloniki, northern Greece," Atmos. Environ., 40, 3195-3206(2006). https://doi.org/10.1016/j.atmosenv.2006.01.049
  37. Lim, J. M., Lee, J. H. and Chung, Y. S., "Chemical characteristics and sources of fine ambient particulate matter from the third and forth industrial complex area of Daejeon city, Korea," Anal. Sci. Techol., 20, 33-40(2007).

Cited by

  1. Air Purification of Smoking Booth Using Photocatalytic Process and Air Filter vol.27, pp.4, 2016, https://doi.org/10.14478/ace.2016.1059