DOI QR코드

DOI QR Code

Mineral Carbonation of High Carbon Dioxide Composition Gases Using Wollastonite-distilled Water Suspension

규회석-증류수 현탁액을 이용한 고농도 CO2 가스의 탄산염 광물화

  • Song, Haejung (Department of Environmental Engineering, The Catholic University of Korea) ;
  • Han, Sang-Jun (Department of Environmental Engineering, The Catholic University of Korea) ;
  • Wee, Jung-Ho (Department of Environmental Engineering, The Catholic University of Korea)
  • 송해정 (가톨릭대학교 환경공학과) ;
  • 한상준 (가톨릭대학교 환경공학과) ;
  • 위정호 (가톨릭대학교 환경공학과)
  • Received : 2014.01.20
  • Accepted : 2014.05.07
  • Published : 2014.05.31

Abstract

The present paper investigates the performance of direct wet mineral carbonation technology to fix carbon dioxide ($CO_2$) from relatively high $CO_2$ concentration feeding gas using wollastonite ($CaSiO_3$)-water (and 0.46 M acetic acid) suspension solution. To minimize the energy consumed on the process, the carbonation in this work is carried out at atmospheric pressure and slightly higher room temperature. As a result, carbon fixation is confirmed on the surface of $CaSiO_3$ after carbonation with wollastonite-water suspension solution and its amount is increased according to the $CO_2$ composition in the feeding gas. The leaching and carbonation ratio of wollastonite-water suspension system obtained from the carbonation with 50% of $CO_2$ composition feeding gas is 13.2% and 10.4%, respectively. On the other hand, the performance of wollastonite-acetic acid in the same condition is 63% for leaching and 1.39% for carbonation.

본 논문에서는 $CO_2$ 포집 및 저장에 필요한 에너지 소비를 최소화하기 위해 $25-65^{\circ}C$ 범위의 온도 및 대기압에서 비교적 높은 $CO_2$ 조성을(15-50 vol%) 갖는 가스 중 $CO_2$를 고정화하기 위해 규회석($CaSiO_3$)-증류수 및 초산 현탁액을 이용한 직접적 습식 탄산염 광물화를 수행하여, 각 현탁액에서의 Ca 침출률과 $CO_2$ 흡수 특성 및 탄산화율에 대해 규명하였다. 규회석-증류수 현탁액의 탄산화 결과 규회석 표면에 고정화된 탄소를 확인하였고 $CO_2$ 조성이 높을수록 저장량은 선형적으로 증가하며 $CO_2$ 조성이 50%일 때 규회석 내 Ca 침출률은 13.2%, 탄산화율은 약 10.4%지만 같은 조건에서 규회석-초산 현탁액의 침출률은 약 63%, 탄산화율은 1.39%로 확인되었다.

Keywords

References

  1. Electimes, http://www.electimes.com/home/news/main/viewmain.jsp?news_uid=107257(2013).
  2. Electimes, http://www.electimes.com/home/news/main/viewmain.jsp?news_uid=107339(2013).
  3. Huijgen, W. J. J., Witkamp, G.-J. and Comans, R. N. J., "Mechanisms of aqueous wollastonite carbonation as a possible $CO_2$ sequestration process," Chem. Eng. Sci., 61(13), 4242-4251(2006). https://doi.org/10.1016/j.ces.2006.01.048
  4. Han, K. U., Lee, C. H. and Chun, H. D. "Feasibility of mineral carbonation technology as $CO_2$ storage method considering the conditions of the domestic industry," Chem. Eng., 49(2), 137-150(2011).
  5. Kim, H. S., Chae, S. C., Ahn, J. H. and Jang, Y. N. "Technology trend : $CO_2$ storage technology by mineral carbonation," Mineral Ind., 22(1), 71-85(2009).
  6. Chae, S. C., Jang, Y. N. and Ryu, K. W., "Trend of mineral carbonation reaction to reduce $CO_2$," J. Geol. Soc., 45(5), 527-555(2009).
  7. Zhang, J., Zhang, R., Geerlings, H. and Bi, J. "A novel indirect wollastonite carbonation route for $CO_2$ sequestration," Chem. Eng. Technol., 33(7), 1177-1183(2010). https://doi.org/10.1002/ceat.201000024
  8. Teir, S., Eloneva, S. and Zevenhoven, R., "Production of precipitated calcium carbonate from calcium silicates and carbon dioxide," Energy Conversion Manage., 46, 2954-2979(2005). https://doi.org/10.1016/j.enconman.2005.02.009
  9. US Geological Survey, "Minerals Yearbook Volume I-Metals and Minerals," (2002).
  10. http://mineral.galleries.com/minerals/silicate/wollasto/wollasto.htm
  11. O'Conner, W. K., Dahlin, D. C., Rush, G. E., Gerdemann, S. J., Penner, L. R. and Nilsen, D. N., "Aqueous mineral carbonation: Mineral availability pretreatment, reaction parameters, and process studies," Minerals Metallur. Proc., 19(2), 95-101(2002).
  12. Park, A.-H. A. and Fan, L.-S., "$CO_2$ mineral sequestration: physically activated dissolution of serpentine and pH swing process," Chem. Eng. Sci., 59(22-23), 5241-5247(2004). https://doi.org/10.1016/j.ces.2004.09.008
  13. Huijgen, W. J. J. and Comans, R. N. J., Cheltenham, United Kingdom, "Carbon dioxide storage by mineral carbonation," IEA GHG Report(2005).
  14. Teir, S., Raiski, T., Kavaliauskate, I., Ginatras, D. and Zevenhoven, R., "Miveral carbonation and the finnish pulp and paper industry," Proceedings of 29th Intermational Technical Conference on Coal Utilization and Fuel System, Clearwater(FL), 18-22(2004).
  15. Lackner, K. S., Butt, D. P., Wendt, C. H., "Progress on binding $CO_2$ in mineral substrates," Energy Conversion Manage., 38, S259-264(1997). https://doi.org/10.1016/S0196-8904(96)00279-8
  16. Pan, S. Y., Chang, E. E. and Chiang, P. C., "$CO_2$ capture by accelerated carbonation of alkaline wastes: A review on its principles and applications," Aerosol Aire Qual. Res., 12, 770-791(2012).
  17. Montes-Hernandez, G., Perez-Lopez, R., Renard, F., Nieto, J. M. and Charlet, L., "Mineral sequestration of $CO_2$ by aqueous carbonation of coal combustion fly-ash," J. Hazard. Mater., 161, 1347-1354(2009). https://doi.org/10.1016/j.jhazmat.2008.04.104
  18. Kakizawa, M., Yamasaki, A. and Yanagisawa, Y., "A new $CO_2$ disposal process using artificial rock weathering of calcium silicate accelerated by acetic acid," Energy, 26, 341-354(2001). https://doi.org/10.1016/S0360-5442(01)00005-6
  19. Zhang, J., Zhang, R., Geerlings, H. and Bi, J. "A novel indirect wollastonite carbonation route for $CO_2$ sequestration," Chem. Eng. Technol., 33(7), 1177-1183(2010). https://doi.org/10.1002/ceat.201000024
  20. Baldyga, J., Henczka, M. and Sokolnicka, K., "Utilization of carbon dioxide b chemically accelerated mineral carbonation," Mater. Lett., 64, 702-704(2010). https://doi.org/10.1016/j.matlet.2009.12.043
  21. Baldyga, J., Henczka, M. and Sokolnicka, K., "Mineral carbonation accelerated by dicarboxylic acid as a disposal process of carbon dioxide," Chem. Eng. Res. Design, 89, 1841-1854(2011). https://doi.org/10.1016/j.cherd.2011.02.034
  22. Huijgen, W. J. J., Witkamp, G. J. and Comans, R. N. J. "Mechanisms of aqueous wollastonite carbonation as a possible $CO_2$ sequestration process," Chem. Eng. Sci., 61(13), 4242-4251(2006). https://doi.org/10.1016/j.ces.2006.01.048
  23. Daval, D., Martinez, I., Corvisier, J., Findling, N., Goffe, B. and Guyot, F., "Carbonation of Ca-bearing silicates, the case of wollastonite: Experimental investigations and kinetic modeling," Chem. Geol., 265, 63-78(2009). https://doi.org/10.1016/j.chemgeo.2009.01.022
  24. Teir, S., Eloneva, S. and Zevenhoven, R., "Production of precipitated calcium carbonate from calcium silicates and carbon dioxide," Energy Conversion Manage., 46, 2954-2979(2005). https://doi.org/10.1016/j.enconman.2005.02.009
  25. Weissbart, E. J. and Rimstidt, J. D., "Wollastonite: Incongruent dissolution and leached layer formation," Geochim. Cosmochim. Acta, 64(23), 4007-4016(2000). https://doi.org/10.1016/S0016-7037(00)00475-0
  26. Greenwood, N. N. and Earnshaw, A., "Chemistry of the elements, 2nd ed.," Butterworthe-Heinemann, Oxford, UK(1997).
  27. Iler, R. K., "The Chemistry of Silica," Wiley, New York(1979).
  28. Bruice, P. Y., "Orgainc chemistry 6th Ed.," Prentice Hall, (2006).
  29. Alan, E., "Chemistry of the Elements 2nd Ed.," Butterworth- Heinemann, ISBN 0080379419(1997).
  30. Chizmeshyya, A. V. G, McKelvy, M. J., Kocher, M., Nunex, R., Kim, Y. C. and Carpenter, R., "$CO_2$ mineral carbonation processes in olivine feedstock: insights from the atomic scale simulation," The Proceedings of the 29th International Technical conference on Coal Utilization & Fuel Systems, Clearwater(FL), USA(2004).
  31. Geerlings, J. J. C., Mesters, C. M. A. and Oosterbeek, H., "Process for mineral carbonation with carbon dioxide," Patent WO02085788(2002).
  32. Huijgen, W. J. J. and Comans, R. N. J., "Carbon dioxide sequestration by mineral carbonation," literature review, ECNC-03-016, Energy Research Centre of The Netherlands, Petten, The Netherlands(2003).
  33. Aschenbrenner, O. and Styring, P., "Comparative study of solvent properties for carbon dioxide absorption," Energy Environ. Sci., 8(3), 1106-1113(2010).
  34. Fockenber, T., Burchard, M. and Maresch, W. B., "Experimental determination of the solubility of natural wollastonite in pure water up to pressure of 5 GPa and at temperatures of $400-800^{\circ}C$," Geochim. Cosmochim. Acta, 70, 1796-1806(2006). https://doi.org/10.1016/j.gca.2005.12.017

Cited by

  1. Properties of non-cement mortars with small addition of alkali activator using fly ash and fused waste slag vol.25, pp.6, 2015, https://doi.org/10.6111/JKCGCT.2015.25.6.257