DOI QR코드

DOI QR Code

PLGA-Based Nanoparticles as Cancer Drug Delivery Systems

  • Tabatabaei Mirakabad, Fatemeh Sadat (Department of Medical Hematology, Tabriz University of Medical Science) ;
  • Nejati-Koshki, Kazem (Department of Medical Biotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Science) ;
  • Akbarzadeh, Abolfazl (Department of Medical Nanotechnology, Tabriz University of Medical Science) ;
  • Yamchi, Mohammad Rahmati (Department of Clinical Biochemistry, School of Medical Sciencesz, Tabriz University of Medical Science) ;
  • Milani, Mortaza (Department of Medical Nanotechnology, Tabriz University of Medical Science) ;
  • Zarghami, Nosratollah (Department of Medical Hematology, Tabriz University of Medical Science) ;
  • Zeighamian, Vahideh (Department of Medical Nanotechnology, Tabriz University of Medical Science) ;
  • Rahimzadeh, Amirbahman (Department of Medical Hematology, Tabriz University of Medical Science) ;
  • Alimohammadi, Somayeh (Department of Medical Biotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Science) ;
  • Hanifehpour, Younes (School of Mechanical Engineering, WCU Nanoresearch Center, Yeungnam University) ;
  • Joo, Sang Woo (School of Mechanical Engineering, WCU Nanoresearch Center, Yeungnam University)
  • Published : 2014.01.30

Abstract

Poly (lactic-co-glycolic acid) (PLGA) is one of the most effective biodegradable polymeric nanoparticles (NPs). It has been approved by the US FDA to use in drug delivery systems due to controlled and sustained-release properties, low toxicity, and biocompatibility with tissue and cells. In the present review, the structure and properties of PLGA copolymers synthesized by ring-opening polymerization of DL-lactide and glicolide were characterized using 1H nuclear magnetic resonance spectroscopy, gel permeation chromatography, Fourier transform infrared spectroscopy and differential scanning calorimetry. Methods of preparation and characterization, various surface modifications, encapsulation of diverse anticancer drugs, active or passive tumor targeting and different release mechanisms of PLGA nanoparticles are discussed. Increasing experience in the application of PLGA nanoparticles has provided a promising future for use of these nanoparticles in cancer treatment, with high efficacy and few side effects.

Keywords

References

  1. Acharya S, Dilnawaz F, Sahoo SK (2009). Targeted epidermal growth factor receptor nanoparticle bioconjugates for breast cancer therapy. Biomaterials, 30, 5737-50. https://doi.org/10.1016/j.biomaterials.2009.07.008
  2. Acharya S, Sahoo SK (2011). PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. Adv Drug Deliv Rev, 63, 170-83. https://doi.org/10.1016/j.addr.2010.10.008
  3. Adams GP, Schier R, McCall AM, et al (2001). High affinity restricts the localization and tumor penetration of singlechain fv antibody molecules. Cancer Res, 61, 4750-5.
  4. Agrahari V, Kabra V, Trivedi P. Development, Optimization and Characterization of Nanoparticle Drug Delivery System of Cisplatin, Springer pp 1325-8.
  5. Akbarzadeh A, Mikaeili H, Zarghami N, et al (2012a). Preparation and in vitro evaluation of doxorubicin-loaded Fe3O4 magnetic nanoparticles modified with biocompatible copolymers. Int J Nanomedicine, 7, 511.
  6. Akbarzadeh A, Rezaei-Sadabady R, Davaran S,et al (2013). Liposome: classification, preparation, and applications. Nanoscale Res Lett, 8, 1-9. https://doi.org/10.1186/1556-276X-8-1
  7. Akbarzadeh A, Samiei M, Davaran S (2012b). Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res Lett, 7, 1-13. https://doi.org/10.1186/1556-276X-7-1
  8. Akbarzadeh A, Samiei M, Joo SW, et al (2012c). Synthesis, characterization and in vitro studies of doxorubicin-loaded magnetic nanoparticles grafted to smart copolymers on A549 lung cancer cell line. J Nanobiotechnol, 10, 46. https://doi.org/10.1186/1477-3155-10-46
  9. Akbarzadeh A, Zarghami N, Mikaeili H, et al (2012d). Synthesis, characterization, and in vitro evaluation of novel polymercoated magnetic nanoparticles for controlled delivery of doxorubicin. Nanotechnol Sci Appl, 5, 13-25.
  10. Alexis F, Venkatraman SS, Rath SK, Boey F (2004). In vitro study of release mechanisms of paclitaxel and rapamycin from drug-incorporated biodegradable stent matrices. J Control Release, 98, 67-74. https://doi.org/10.1016/j.jconrel.2004.04.011
  11. Allemann E, Gurny R, Doelker E (1993). Drug-loaded nanoparticles: preparation methods and drug targeting issues. Eur J Pharm Biopharm, 39, 173-91.
  12. Allen TM (2002). Ligand-targeted therapeutics in anticancer therapy. Nat Rev Cancer, 2, 750-63. https://doi.org/10.1038/nrc903
  13. Alonso MJ, Losa C, Calvo P, Vila-Jato JL (1991). Approaches to improve the association of amikacin sulphate to poly (alkylcyanoacrylate) nanoparticles. Int J Pharm, 68, 69-76. https://doi.org/10.1016/0378-5173(91)90128-B
  14. Alyautdin R, Gothier D, Petrov V, Kharkevich D, Kreuter J (1995). Analgesic activity of the hexapeptide dalargin adsorbed on the surface of polysorbate 80-coated poly (butyl cyanoacrylate) nanoparticles. Eur J Pharm Biopharm, 41, 44-8.
  15. Alyautdin RN, Tezikov EB, Ramge P, et al (1998). Significant entry of tubocurarine into the brain of rats by adsorption to polysorbate 80-coated polybutylcyanoacrylate nanoparticles: an in situ brain perfusion study. J Microencapsul, 15, 67-74. https://doi.org/10.3109/02652049809006836
  16. Ambudkar SV, Kimchi-Sarfaty C, Sauna Z.E, Gottesman MM (2003). P-glycoprotein: from genomics to mechanism. Oncogene, 22, 7468-85. https://doi.org/10.1038/sj.onc.1206948
  17. Anand P, Nair HB, Sung B, et al (2010). Design of curcuminloaded PLGA nanoparticles formulation with enhanced cellular uptake, and increased bioactivity< i> in vitro and superior bioavailability< i> in vivo. Biochem pharmacol. 79, 330-8. https://doi.org/10.1016/j.bcp.2009.09.003
  18. Araujo L, Lobenberg R, Kreuter J (1999). Influence of the surfactant concentration on the body distribution of nanoparticles. J Drug Targeting, 6, 373-85. https://doi.org/10.3109/10611869908996844
  19. Astete CE, Sabliov CM (2006). Synthesis and characterization of PLGA nanoparticles. J Biom Sci, Polymer Edition, 17, 247-89. https://doi.org/10.1163/156856206775997322
  20. Avgoustakis K, Beletsi A, Panagi Z, et al (2002). PLGA-mPEG nanoparticles of cisplatin: in vitro nanoparticle degradation, in vitro drug release and in vivo drug residence in blood properties. J Control Release, 79, 123-35. https://doi.org/10.1016/S0168-3659(01)00530-2
  21. Bala I, Hariharan S, Kumar MN (2004). PLGA nanoparticles in drug delivery: the state of the art. Crit Rev Ther Drug Carrier Syst, 21, 387. https://doi.org/10.1615/CritRevTherDrugCarrierSyst.v21.i5.20
  22. Betancourt T, Brown B, Brannon-Peppas L (2007). Doxorubicinloaded PLGA nanoparticles by nanoprecipitation: preparation, characterization and in vitro evaluation. Nanomedicine, 2, 219-32. https://doi.org/10.2217/17435889.2.2.219
  23. Bilati U, Allemann E, Doelker E (2005). Strategic approaches for overcoming peptide and protein instability within biodegradable nano-and microparticles. Eur J Pharm Biopharm, 59, 375-88. https://doi.org/10.1016/j.ejpb.2004.10.006
  24. Bishara A, Domb AJ (2005). PLA stereocomplexes for controlled release of somatostatin analogue. J Control Release, 107, 474-83. https://doi.org/10.1016/j.jconrel.2005.05.026
  25. Bisht S, Feldmann G, Soni S, et al (2007). Polymeric nanoparticle-encapsulated curcumin ("nanocurcumin"): a novel strategy for human cancer therapy. J Nanobiotechnol, 5, 1-18. https://doi.org/10.1186/1477-3155-5-1
  26. Borst P, Zelcer N, Van de Wetering K, Poolman B (2006). On the putative co-transport of drugs by multidrug resistance proteins. FEBS Lett, 580, 1085-93. https://doi.org/10.1016/j.febslet.2005.12.039
  27. Brigger I, Dubernet C, Couvreur P (2002). Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev, 54, 631-51. https://doi.org/10.1016/S0169-409X(02)00044-3
  28. Butoescu N, Seemayer CA, Foti M, Jordan O, Doelker E (2009). Dexamethasone-containing PLGA superparamagnetic microparticles as carriers for the local treatment of arthritis. Biomaterials, 30, 1772-80. https://doi.org/10.1016/j.biomaterials.2008.12.017
  29. Byrne JD, Betancourt T, Brannon-Peppas L (2008). Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev, 60, 1615-26. https://doi.org/10.1016/j.addr.2008.08.005
  30. Calvo P, Gouritin B, Brigger I, et al (2001). PEGylated polycyanoacrylate nanoparticles as vector for drug delivery in prion diseases. J Neuroscience Methods, 111, 151-5. https://doi.org/10.1016/S0165-0270(01)00450-2
  31. Carmeliet P (2005). VEGF as a key mediator of angiogenesis in cancer, Oncol, 69, 4-10. https://doi.org/10.1159/000088478
  32. Chacon M, Molpeceres J, Berges L, et al (1999). Stability and freeze-drying of cyclosporine loaded poly (D, L lactide- glycolide) carriers. Eur J Pharm Sci, 8, 99-107. https://doi.org/10.1016/S0928-0987(98)00066-9
  33. Chan S, Scheulen ME, Johnston S, et al (2005). Phase II study of temsirolimus (CCI-779), a novel inhibitor of mTOR, in heavily pretreated patients with locally advanced or metastatic breast cancer. J Clin Oncol, 23, 5314-22. https://doi.org/10.1200/JCO.2005.66.130
  34. Cheng FY, Wang SPH, Su CH, et al (2008). Stabilizer-free poly (lactide-< i> co-glycolide) nanoparticles for multimodal biomedical probes. Biomaterials, 29, 2104-12. https://doi.org/10.1016/j.biomaterials.2008.01.010
  35. Cheng J, Teply BA, Sherifi I, et al (2007). Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery. Biomaterials, 28, 869-76. https://doi.org/10.1016/j.biomaterials.2006.09.047
  36. Cheng L, Jin C, Lv W, Ding Q, Han X (2011). Developing a Highly Stable PLGA-mPEG Nanoparticle Loaded with Cisplatin for Chemotherapy of Ovarian Cancer. PloS One, 6, 25433. https://doi.org/10.1371/journal.pone.0025433
  37. Cho K, Wang X, Nie S, Shin DM (2008). Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res, 14, 1310-6. https://doi.org/10.1158/1078-0432.CCR-07-1441
  38. Choi SW, Kim JH (2007). Design of surface-modified poly (D, L-lactide-co-glycolide) nanoparticles for targeted drug delivery to bone. J Control Releas, 122, 24-30. https://doi.org/10.1016/j.jconrel.2007.06.003
  39. Couvreur P, Dubernet C, Puisieux F (1995). Controlled drug delivery with nanoparticles: current possibilities and future trends. Eur J Pharm Biopharm, 41, 2-13.
  40. D'Souza SS, Selmin F, Murty SB, et al (2004). Assessment of fertility in male rats after extended chemical castration with a GnRH antagonist. The AAPS J, 6, 94-9.
  41. D'Mello SR, Das SK, Das NG. Polymeric Nanoparticles for Small-Molecule Drugs: Biodegradation of Polymers and Fabrication of Nanoparticles. Drug Delivery Nanoparticles Formulation and Characterization: 16.
  42. D'Souza SS, Faraj JA, DeLuca PP (2005). A model-dependent approach to correlate accelerated with real-time release from biodegradable microspheres. AAPS PharmSciTech, 6, 553-64. https://doi.org/10.1208/pt060470
  43. Danhier F, Ansorena E, Azeitao J, et al (2012). PLGA-based nanoparticles: An overview of biomedical applications. J Control Release, 161, 505-22. https://doi.org/10.1016/j.jconrel.2012.01.043
  44. Danhier F, Feron O, Preat V (2010). To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release, 148, 135-46. https://doi.org/10.1016/j.jconrel.2010.08.027
  45. Danhier F, Lecouturier N, Vroman B, et al (2009). Paclitaxelloaded PEGylated PLGA-based nanoparticles: in vitro and in vivo evaluation. J Control Release, 133, 11-7. https://doi.org/10.1016/j.jconrel.2008.09.086
  46. Daniels TR, Delgado T, Helguera G, Penichet ML (2006). The transferrin receptor part II: targeted delivery of therapeutic agents into cancer cells. Clinical Immunol, 121, 159-76. https://doi.org/10.1016/j.clim.2006.06.006
  47. Davis FF (2002). The origin of pegnology. Advanced Drug Delivery Reviews, 54, 457-8. https://doi.org/10.1016/S0169-409X(02)00021-2
  48. Davis ME (2008). Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov, 7,771-82. https://doi.org/10.1038/nrd2614
  49. Derakhshandeh K, Erfan M, Dadashzadeh S (2007). Encapsulation of 9-nitrocamptothecin, a novel anticancer drug, in biodegradable nanoparticles: factorial design, characterization and release kinetics. Eur J Pharm Biopharm,, 66, 34-41. https://doi.org/10.1016/j.ejpb.2006.09.004
  50. Desai KGH, Olsen KF, Mallery SR, Stoner GD, Schwendeman SP (2010). Formulation and in vitro-in vivo evaluation of black raspberry extract-loaded PLGA/PLA injectable millicylindrical implants for sustained delivery of chemopreventive anthocyanins. Pharm Res, 27, 628-43. https://doi.org/10.1007/s11095-009-0038-5
  51. Desgrosellier JS, Cheresh DA (2010). Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer, 10, 9-22. https://doi.org/10.1038/nrc2748
  52. Dinarvand R, Sepehri N, Manoochehri S, Rouhani H, Atyabi F (2011). Polylactide-co-glycolide nanoparticles for controlled delivery of anticancer agents. Int J Nanomedicine, 6, 877.
  53. Dong WY, Korber M, Lopez Esguerra V, Bodmeier R (2006). Stability of poly (D, L-lactide-co-glycolide). and leuprolide acetate in in-situ forming drug delivery systems. J Control Release, 115, 158-67. https://doi.org/10.1016/j.jconrel.2006.07.013
  54. Dong Y, Feng SS (2005). Poly (d, l-lactide-co-glycolide)./montmorillonite nanoparticles for oral delivery of anticancer drugs. Biomaterials, 26, 6068-76. https://doi.org/10.1016/j.biomaterials.2005.03.021
  55. Dorta MJ, Santovena A, Llabres M, Farina JB (2002). Potential applications of PLGA film-implants in modulating in vitro drugs release. Int J Pharm, 248, 149-56. https://doi.org/10.1016/S0378-5173(02)00431-3
  56. Duncan R (2003). The dawning era of polymer. Nat Rev Drug Discov, 2, 347. https://doi.org/10.1038/nrd1088
  57. Dunne M, Corrigan OI, Ramtoola Z (2000). Influence of particle size and dissolution conditions on the degradation properties of polylactide-< i> co-glycolide particles. Biomaterials 21, 1659-68. https://doi.org/10.1016/S0142-9612(00)00040-5
  58. Esmaeili F, Atyabi F, Dinarvand R (2007a). Preparation of PLGA nanoparticles using TPGS in the spontaneous emulsification solvent diffusion method. J Experim Nanosci, 2, 183-92. https://doi.org/10.1080/17458080701393137
  59. Esmaeili F, Ghahremani MH, Esmaeili B, et al (2008a). PLGA nanoparticles of different surface properties: Preparation and evaluation of their body distribution. Int J Pharm, 349, 249-55. https://doi.org/10.1016/j.ijpharm.2007.07.038
  60. Esmaeili F, Ghahremani MH, Ostad SN, Atyabi F, Seyedabadi M, Malekshahi M.R, Amini M, Dinarvand R (2008b). Folate-receptor-targeted delivery of docetaxel nanoparticles prepared by PLGA-PEG-folate conjugate. J Drug Targeting, 16, 415-23. https://doi.org/10.1080/10611860802088630
  61. Esmaeili F, Hosseini-Nasr M, Rad-Malekshahi M, et al (2007b). Preparation and antibacterial activity evaluation of rifampicin-loaded poly lactide-co-glycolide nanoparticles. Nanomedicine: Nanotechnol, Biol and Med, 3, 161-7. https://doi.org/10.1016/j.nano.2007.03.003
  62. Feng SS (2004). Nanoparticles of biodegradable polymers for new-concept chemotherapy. Expert Rev Med Dev, 1, 115-25. https://doi.org/10.1586/17434440.1.1.115
  63. Fessi H, Puisieux F, Devissaguet JP, Ammoury N, Benita S (1989). Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int J Pharm, 55, R1-R4. https://doi.org/10.1016/0378-5173(89)90270-6
  64. Foged C, Brodin B, Frokjaer S, Sundblad A (2005). Particle size and surface charge affect particle uptake by human dendritic cells in an in vitro model. Int J Pharm, 298, 315-22. https://doi.org/10.1016/j.ijpharm.2005.03.035
  65. Fojo AT, Ueda K, Slamon DJ, et al (1987). Expression of a multidrug-resistance gene in human tumors and tissues. Proc Natl Acad Sci, 84, 265-9. https://doi.org/10.1073/pnas.84.1.265
  66. Folkman J (1971). Transplacental carcinogenesis by stilbestrol. The New England J Med, 285, 404. https://doi.org/10.1056/NEJM197108122850711
  67. Fonseca C, Simoes S, Gaspar R (2002). Paclitaxel-loaded PLGA nanoparticles: preparation, physicochemical characterization and in vitro anti-tumoral activity. J Control Release, 83, 273-86. https://doi.org/10.1016/S0168-3659(02)00212-2
  68. Fredenberg S, Wahlgren M, Reslow M, Axelsson A (2011). The mechanisms of drug release in poly (lactic-co-glycolic acid).-based drug delivery systems-A review. Int J Pharm, 415, 34-52. https://doi.org/10.1016/j.ijpharm.2011.05.049
  69. Friess W, Schlapp M (2002). Release mechanisms from gentamicin loaded poly (lactic-co-glycolic acid)(PLGA) microparticles. J Pharm Sci, 91, 845-55. https://doi.org/10.1002/jps.10012
  70. Gagliardi M, Silvestri D, Cristallini C, et al (2010). Combined drug release from biodegradable bilayer coating for endovascular stents. J Biomed Materials Res Part B: Applied Biomaterials, 93, 375-85.
  71. Garber K (2001). Rapamycin may prevent post-transplant lymphoma. J Natl Cancer Inst, 93, 1519. https://doi.org/10.1093/jnci/93.20.1519
  72. Garinot M, Fievez V, Pourcelle V, et al (2007). PEGylated PLGAbased nanoparticles targeting M cells for oral vaccination. J Control Release, 120, 195-204. https://doi.org/10.1016/j.jconrel.2007.04.021
  73. Gaumet M, Vargas A, Gurny R, Delie F (2008). Nanoparticles for drug delivery: the need for precision in reporting particle size parameters. Eur J Pharm Biopharm, 69, 1-9. https://doi.org/10.1016/j.ejpb.2007.08.001
  74. Gelperina S, Maksimenko O, Khalansky A, et al (2010). Drug delivery to the brain using surfactant-coated poly (lactideco-glycolide) nanoparticles: influence of the formulation parameters. Eur J Pharm Biopharm, 74, 157-63. https://doi.org/10.1016/j.ejpb.2009.09.003
  75. Gelperina SE, Khalansky AS, Skidan IN, et al (2002). Toxicological studies of doxorubicin bound to polysorbate 80-coated poly (butyl cyanoacrylate) nanoparticles in healthy rats and rats with intracranial glioblastoma. Toxicol lett, 126, 131-41. https://doi.org/10.1016/S0378-4274(01)00456-8
  76. Genis L, Galvez BG, Gonzalo P, Arroyo AG (2006). MT1-MMP: Universal or particular player in angiogenesis? Cancer and Metastasis Rev, 25, 77-86. https://doi.org/10.1007/s10555-006-7891-z
  77. Gomez-Gaete C, Tsapis N, Besnard M, Bochot A, Fattal E (2007). Encapsulation of dexamethasone into biodegradable polymeric nanoparticles. Int J Pharm, 331, 153-9. https://doi.org/10.1016/j.ijpharm.2006.11.028
  78. Gosk S, Moos T, Gottstein C, Bendas G (2008). VCAM-1 directed immunoliposomes selectively target tumor vasculature< i> in vivo. (BBA)-Biomembranes, 1778, 854-63. https://doi.org/10.1016/j.bbamem.2007.12.021
  79. Govender T, Stolnik S, Garnett MC, Illum L, Davis SS (1999). PLGA nanoparticles prepared by nanoprecipitation: drug loading and release studies of a water soluble drug. J Control Release, 57, 171-85. https://doi.org/10.1016/S0168-3659(98)00116-3
  80. Gref R, Luck M, Quellec P, et al (2000). 'Stealth'corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids and surfaces. B, Biointerfaces, 18, 301. https://doi.org/10.1016/S0927-7765(99)00156-3
  81. Gryparis EC, Hatziapostolou M, Papadimitriou E, Avgoustakis K (2007). Anticancer activity of cisplatin-loaded PLGA-mPEG nanoparticles on LNCaP prostate cancer cells. Eur J Pharm Biopharm, 67, 1-8. https://doi.org/10.1016/j.ejpb.2006.12.017
  82. Haddadi A, Elamanchili P, Lavasanifar A, et al (2008). Delivery of rapamycin by PLGA nanoparticles enhances its suppressive activity on dendritic cells. J Biomed Materials Res Part A, 84, 885-98.
  83. Hans ML, Lowman AM (2002). Biodegradable nanoparticles for drug delivery and targeting. Current Opinion Solid State Mater Sci, 6, 319-27. https://doi.org/10.1016/S1359-0286(02)00117-1
  84. Hidalgo M, Rowinsky EK (2000). The rapamycin-sensitive signal transduction pathway as a target for cancer therapy. Oncogene, 19, 6680. https://doi.org/10.1038/sj.onc.1204091
  85. Hillaireau H, Couvreur P (2009). Nanocarriers' entry into the cell: relevance to drug delivery. Cell Mol Life Sci, 66, 2873-96. https://doi.org/10.1007/s00018-009-0053-z
  86. Houchin ML, Topp EM (2008). Chemical degradation of peptides and proteins in PLGA: a review of reactions and mechanisms. J Pharm sci, 97, 2395-404. https://doi.org/10.1002/jps.21176
  87. Ibrahim H, Bindschaedler C, Doelker E, Buri P, Gurny R (1992). Aqueous nanodispersions prepared by a salting-out process. Int J Pharm, 87, 239-46. https://doi.org/10.1016/0378-5173(92)90248-Z
  88. Jain RA (2000). The manufacturing techniques of various drug loaded biodegradable poly (lactide-< i> co-glycolide) (PLGA) devices. Biomaterials, 21, 2475-90. https://doi.org/10.1016/S0142-9612(00)00115-0
  89. Jain RK (1989). Delivery of novel therapeutic agents in tumors: physiological barriers and strategies. J Natl Cancer Inst, 81, 570-76. https://doi.org/10.1093/jnci/81.8.570
  90. Jain RK (1999). Understanding barriers to drug delivery: high resolution in vivo imaging is key. Clinical Cancer Res, 5, 1605-06.
  91. Jain RK (2001). Delivery of molecular medicine to solid tumors: lessons from in vivo imaging of gene expression and function. J Control Release, 74, 7-25. https://doi.org/10.1016/S0168-3659(01)00306-6
  92. Jemal A, Bray F, Center MM, et al (2011). Global cancer statistics. CA: A cancer J clinicians, 61, 69-90. https://doi.org/10.3322/caac.20107
  93. Jin C, Bai L, Wu H, Song W, Guo G, Dou K (2009). Cytotoxicity of paclitaxel incorporated in PLGA nanoparticles on hypoxic human tumor cells. Pharm Res, 26, 1776-84. https://doi.org/10.1007/s11095-009-9889-z
  94. Johnson OFL, Jaworowicz W, Cleland JL, et al (1997). The stabilization and encapsulation of human growth hormone into biodegradable microspheres. Pharm Res, 14, 730-5. https://doi.org/10.1023/A:1012142204132
  95. Jonnalagadda S, Robinson DH (2000). A bioresorbable, polylactide reservoir for diffusional and osmotically controlled drug delivery. AAPS Pharm Sci Tech, 1, 26-34.
  96. Jung T, Kamm W, Breitenbach A, et al (2000). Biodegradable nanoparticles for oral delivery of peptides: is there a role for polymers to affect mucosal uptake? Eur J Pharm Biopharm, 50, 147-60. https://doi.org/10.1016/S0939-6411(00)00084-9
  97. Kalaria DR, Sharma G, Beniwal V, Ravi Kumar MN (2009). Design of biodegradable nanoparticles for oral delivery of doxorubicin: in vivo pharmacokinetics and toxicity studies in rats. Pharm Res, 26, 492-501. https://doi.org/10.1007/s11095-008-9763-4
  98. Kang J, Schwendeman SP (2007). Pore closing and opening in biodegradable polymers and their effect on the controlled release of proteins. Molecular Pharm, 4, 104-18. https://doi.org/10.1021/mp060041n
  99. Kim HK, Chung HJ, Park TG (2006). Biodegradable polymeric microspheres with “open/closed” pores for sustained release of human growth hormone. J Control Release, 112, 167-74. https://doi.org/10.1016/j.jconrel.2006.02.004
  100. Kim SH, Jeong JH, Chun KW, Park TG (2005). Target-specific cellular uptake of PLGA nanoparticles coated with poly (L-lysine)-poly (ethylene glycol)-folate conjugate. Langmuir 21, 8852-7. https://doi.org/10.1021/la0502084
  101. Kirpotin DB, Drummond DC, Shao Y, et al (2006). Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res, 66, 6732-40. https://doi.org/10.1158/0008-5472.CAN-05-4199
  102. Klose D, Siepmann F, Elkharraz K, Siepmann J (2008). PLGAbased drug delivery systems: Importance of the type of drug and device geometry. Int J Pharm, 354, 95-103. https://doi.org/10.1016/j.ijpharm.2007.10.030
  103. Kohno K, Sato S, Takano H, Matsuo K, Kuwano M (1989). The direct activation of human multidrug resistance gene (MDR1) by anticancer agents. Biochem Biophys Res Commun,, 165, 1415-21. https://doi.org/10.1016/0006-291X(89)92761-7
  104. Konan Y.N, Gurny R, Allemann E (2002). Preparation and characterization of sterile and freeze-dried sub-200 nm nanoparticles. Int J Pharm, 233, 239-52. https://doi.org/10.1016/S0378-5173(01)00944-9
  105. Kreuter J, Petrov V.E, Kharkevich D.A, Alyautdin R.N (1997). Influence of the type of surfactant on the analgesic effects induced by the peptide dalargin after its delivery across the blood-brain barrier using surfactant-coated nanoparticles. J Control Release, 49, 81-7. https://doi.org/10.1016/S0168-3659(97)00061-8
  106. Kumari A, Yadav SK, Yadav SC (2010). Biodegradable polymeric nanoparticles based drug delivery systems. Colloids and Surfaces B: Biointerfaces, 75, 1-18. https://doi.org/10.1016/j.colsurfb.2009.09.001
  107. Labhasetwar V, Song C, Levy RJ (1997). Nanoparticle drug delivery system for restenosis. Advanc Drug Deliv Rev, 24, 63-85. https://doi.org/10.1016/S0169-409X(96)00483-8
  108. Lagarce F, Renaud P, Faisant N, et al (2005). Baclofen-loaded microspheres: preparation and efficacy testing in a new rabbit model. Eur J Pharm Biopharm, 59, 449-59. https://doi.org/10.1016/j.ejpb.2004.08.013
  109. Lam XM, Duenas ET, Daugherty AL, Levin N, Cleland JL (2000). Sustained release of recombinant human insulin-like growth factor-I for treatment of diabetes. J Control Release, 67, 281-92. https://doi.org/10.1016/S0168-3659(00)00224-8
  110. Lambert G, Fattal E, Couvreur P (2001). Nanoparticulate systems for the delivery of antisense oligonucleotides. Advanc Drug Deliv Rev, 47, 99-112. https://doi.org/10.1016/S0169-409X(00)00116-2
  111. Lammers T, Hennink WE, Storm G (2008). Tumour-targeted nanomedicines: principles and practice. British J Cancer, 99, 392-7. https://doi.org/10.1038/sj.bjc.6604483
  112. Lamprecht A, Ubrich N, Yamamoto H, et al (2001). Biodegradable nanoparticles for targeted drug delivery in treatment of inflammatory bowel disease. J Pharm and Experimen Therapeutics, 299, 775-81.
  113. Langer R (1998). Drug delivery and targeting. Nature, 392, 5.
  114. Langer R, Folkman J (1976). Polymers for the sustained release of proteins and other macromolecules.
  115. Lee ES, Na K, Bae YH (2005). Doxorubicin loaded pH-sensitive polymeric micelles for reversal of resistant MCF-7 tumor. J Control Release: official, J Control Release Socie, 103, 405. https://doi.org/10.1016/j.jconrel.2004.12.018
  116. Li B, Xu H, Li Z, et al (2012). Bypassing multidrug resistance in human breast cancer cells with lipid/polymer particle assemblies. Int J Nanomedicine, 7, 187.
  117. Li Y, Pei Y, Zhang X, et al (2001). PEGylated PLGA nanoparticles as protein carriers: synthesis, preparation and biodistribution in rats. J Control Release, 71, 203. https://doi.org/10.1016/S0168-3659(01)00218-8
  118. Liu Y, Miyoshi H, Nakamura M (2007). Nanomedicine for drug delivery and imaging: a promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles. Int J Cancer, 120, 2527-37. https://doi.org/10.1002/ijc.22709
  119. Low PS, Kularatne SA (2009). Folate-targeted therapeutic and imaging agents for cancer. Curr Opin Chem Biol, 13, 256-62. https://doi.org/10.1016/j.cbpa.2009.03.022
  120. Lu J.M, Wang X, Marin-Muller C, et al (2009). Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Rev Mol Diagn, 9, 325-41. https://doi.org/10.1586/erm.09.15
  121. Lurje G, Lenz HJ (2009). EGFR signaling and drug discovery. Oncol, 77, 400-10. https://doi.org/10.1159/000279388
  122. Ma Y, Zheng Y, Liu K, et al (2010). Nanoparticles of poly (lactide-co-glycolide)-da-tocopheryl polyethylene glycol 1000 succinate random copolymer for cancer treatment. Nanoscale Res Lett, 5, 1161-9. https://doi.org/10.1007/s11671-010-9620-3
  123. Maeda H, Bharate GY, Daruwalla J (2009). Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur J Pharm Biopharm, 71, 409-19. https://doi.org/10.1016/j.ejpb.2008.11.010
  124. Maeda H, Sawa T, Konno T (2001). Mechanism of tumortargeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS. J Control Release, 74, 47-61. https://doi.org/10.1016/S0168-3659(01)00309-1
  125. Mahapatro A, Singh DK (2011). Biodegradable nanoparticles are excellent vehicle for site directed in-vivo delivery of drugs and vaccines. J Nanobiotechnol, 9, 55. https://doi.org/10.1186/1477-3155-9-55
  126. Manuela Gaspar M, Blanco D, Cruz MEM, Jose Alonso M (1998). Formulation of L-asparaginase-loaded poly (lactideco-glycolide) nanoparticles: influence of polymer properties on enzyme loading, activity and in vitro release. J Control Release, 52, 53-62. https://doi.org/10.1016/S0168-3659(97)00196-X
  127. Matsumoto A, Matsukawa Y, Horikiri Y, Suzuki T (2006). Rupture and drug release characteristics of multi-reservoir type microspheres with poly (dl-lactide-< i> co-glycolide) and poly (dl-lactide). Int J Pharm, 327, 110-6. https://doi.org/10.1016/j.ijpharm.2006.07.055
  128. Matsumura Y, Maeda H (1986). A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs, Cancer Res, 46, 6387-92.
  129. Mattheolabakis G, Taoufik E, Haralambous S, Roberts ML, Avgoustakis K (2009). In vivo investigation of tolerance and antitumor activity of cisplatin-loaded PLGA-mPEG nanoparticles. Eur J Pharm Biopharm, 71, 190-5. https://doi.org/10.1016/j.ejpb.2008.09.011
  130. Minko T (2004). Drug targeting to the colon with lectins and neoglycoconjugates. Advanc Drug Deliv Rev, 56, 491-509. https://doi.org/10.1016/j.addr.2003.10.017
  131. Misra R, Sahoo SK (2010). Intracellular trafficking of nuclear localization signal conjugated nanoparticles for cancer therapy. Eur J Pharm Sci, 39, 152-63. https://doi.org/10.1016/j.ejps.2009.11.010
  132. Mittal G, Sahana DK, Bhardwaj V, Ravi Kumar MNV (2007). Estradiol loaded PLGA nanoparticles for oral administration: Effect of polymer molecular weight and copolymer composition on release behavior< i> in vitro and< i> in vivo. J Control Release, 119, 77-85. https://doi.org/10.1016/j.jconrel.2007.01.016
  133. Mo Y, Lim LY (2005). Preparation and in vitro anticancer activity of wheat germ agglutinin (WGA)-conjugated PLGA nanoparticles loaded with paclitaxel and isopropyl myristate. J Control Release, 107, 30-42. https://doi.org/10.1016/j.jconrel.2004.06.024
  134. Mochizuki A, Niikawa T, Omura I, Yamashita S (2008). Controlled release of argatroban from PLA film-Effect of hydroxylesters as additives on enhancement of drug release. J Appl Polymer Sci, 108, 3353-60. https://doi.org/10.1002/app.27970
  135. Moghimi SM, Hunter AC (2000). Poloxamers and poloxamines in nanoparticle engineering and experimental medicine. Trends in Biotechnol, 18, 412-20. https://doi.org/10.1016/S0167-7799(00)01485-2
  136. Moghimi SM, Hunter AC, Murray JC (2005). Nanomedicine: current status and future prospects. The FASEB J, 19, 311-30. https://doi.org/10.1096/fj.04-2747rev
  137. Mohanraj V.J, Chen Y (2007). Nanoparticles-a review. Tropical J Pharm Res, 5, 561-73.
  138. Moreno D, Zalba S, Navarro I, et al (2010). Pharmacodynamics of cisplatin-loaded PLGA nanoparticles administered to tumor-bearing mice. Eur J Pharm Biopharm, 74, 265-74. https://doi.org/10.1016/j.ejpb.2009.10.005
  139. Mosqueira VCF, Legrand P, Gulik A, et al (2001). Relationship between complement activation, cellular uptake and surface physicochemical aspects of novel PEG-modified nanocapsules. Biomaterials, 22, 2967-79. https://doi.org/10.1016/S0142-9612(01)00043-6
  140. Mozafari MR, Pardakhty A, Azarmi S, et al (2009). Role of nanocarrier systems in cancer nanotherapy. J Liposome Res, 19, 310-21. https://doi.org/10.3109/08982100902913204
  141. Mu L, Feng SS (2003). A novel controlled release formulation for the anticancer drug. J Control Release, 86, 33-48. https://doi.org/10.1016/S0168-3659(02)00320-6
  142. Mukerjee A, Vishwanatha JK (2009). Formulation, characterization and evaluation of curcumin-loaded PLGA nanospheres for cancer therapy. Anticancer Res, 29, 3867-75.
  143. Mundargi RC, Babu VR, Rangaswamy V, et al (2008). Nano/micro technologies for delivering macromolecular therapeutics using poly (d, l-lactide-< i> co-glycolide) and its derivatives. J Control Release, 125, 193-209. https://doi.org/10.1016/j.jconrel.2007.09.013
  144. Nicoli S, Santi P, Couvreur P, et al (2001). Design of triptorelin loaded nanospheres for transdermal iontophoretic administration. Int J Pharm, 214, 31-5. https://doi.org/10.1016/S0378-5173(00)00632-3
  145. Nie S, Xing Y, Kim GJ, Simons JW (2007). Nanotechnology applications in cancer. Annu. Rev. Biomed. Eng, 9, 257-88. https://doi.org/10.1146/annurev.bioeng.9.060906.152025
  146. Nobs L, Buchegger F, Gurny R, Allemann E (2004). Poly (lactic acid) nanoparticles labeled with biologically active $Neutravidin^{TM}$ for active targeting. Eur J Pharm Biopharm, 58, 483-90. https://doi.org/10.1016/j.ejpb.2004.04.006
  147. Nobs L, Buchegger F, Gurny R, Allemann E (2006). Biodegradable nanoparticles for direct or two-step tumor immunotargeting. Bioconjugate chemistry, 17, 139-45. https://doi.org/10.1021/bc050137k
  148. Noh WC, Mondesire WH, Peng J, et al (2004). Determinants of rapamycin sensitivity in breast cancer cells. Clinical Cancer Res, 10, 1013-23. https://doi.org/10.1158/1078-0432.CCR-03-0043
  149. Ong B, Ranganath SH, Lee LY, et al (2009). Paclitaxel delivery from PLGA foams for controlled release in postsurgical chemotherapy against glioblastoma multiforme. Biomaterials, 30, 3189-96. https://doi.org/10.1016/j.biomaterials.2009.02.030
  150. Owens DE, Peppas NA (2006). Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm, 307, 93-102. https://doi.org/10.1016/j.ijpharm.2005.10.010
  151. Palmer TN, Caride VJ, Caldecourt MA, Twickler J, Abdullah V (1984). The mechanism of liposome accumulation in infarction. (BBA)-General Subjects, 797, 363-8. https://doi.org/10.1016/0304-4165(84)90258-7
  152. Panyam J, Labhasetwar V (2012). Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev, 55, 29-47.
  153. Panyam J, Sahoo SK, Prabha S, Bargar T, Labhasetwar V (2003). Fluorescence and electron microscopy probes for cellular and tissue uptake of poly (d, l-lactide-< i> co-glycolide) nanoparticles. Int J Pharm, 262, 1-11. https://doi.org/10.1016/S0378-5173(03)00295-3
  154. Panyam J, Zhou WENZ, Prabha S, Sahoo SK, Labhasetwar V (2002). Rapid endo-lysosomal escape of poly (DL-lactideco-glycolide) nanoparticles: implications for drug and gene delivery. The FASEB J, 16, 1217-26. https://doi.org/10.1096/fj.02-0088com
  155. Park EK, Lee SB, Lee YM (2005). Preparation and characterization of methoxy poly (ethylene glycol)/poly (< i> $\varepsilon$-caprolactone) amphiphilic block copolymeric nanospheres for tumor-specific folate-mediated targeting of anticancer drugs. Biomaterial, 26, 1053-61. https://doi.org/10.1016/j.biomaterials.2004.04.008
  156. Park H, Yang J, Lee J, et al (2009a). Multifunctional nanoparticles for combined doxorubicin and photothermal treatments. Acs Nano, 3, 2919-26. https://doi.org/10.1021/nn900215k
  157. Park K, Lee S, Kang E, et al (2009b). New generation of multifunctional nanoparticles for cancer imaging and therapy. Advanced functional materials, 19, 1553-66. https://doi.org/10.1002/adfm.200801655
  158. Park TG (1994). Degradation of poly (D, L-lactic acid) microspheres: effect of molecular weight. J Control Release, 30, 161-73. https://doi.org/10.1016/0168-3659(94)90263-1
  159. Park TG (1995). Degradation of poly (lactic-co-glycolic acid) microspheres: effect of copolymer composition. Biomaterials, 16, 1123-30. https://doi.org/10.1016/0142-9612(95)93575-X
  160. Parveen S, Sahoo SK (2008). Polymeric nanoparticles for cancer therapy. J Drug Targeting, 16, 108-23. https://doi.org/10.1080/10611860701794353
  161. Pasqualini R, Koivunen E, Kain R, et al (2000). Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res, 60, 722-7.
  162. Pastorino F, Brignole C, Di Paolo D, et al (2006). Targeting Liposomal Chemotherapy via Both Tumor Cell-Specific and Tumor Vasculature-Specific Ligands Potentiates Therapeutic Efficacy. Cancer Res, 66, 10073-82. https://doi.org/10.1158/0008-5472.CAN-06-2117
  163. Patel NR, Rathi A, Mongayt D, Torchilin VP (2011). Reversal of multidrug resistance by co-delivery of tariquidar (XR9576) and paclitaxel using long-circulating liposomes. Int J Pharm, 416, 296-9. https://doi.org/10.1016/j.ijpharm.2011.05.082
  164. Patil SD, Papadmitrakopoulos F, Burgess DJ (2007). Concurrent delivery of dexamethasone and VEGF for localized inflammation control and angiogenesis. J Control Release, 117, 68-79. https://doi.org/10.1016/j.jconrel.2006.10.013
  165. Peer D, Karp JM, Hong S, et al (2007). Nanocarriers as an emerging platform for cancer therapy. Nat nanotechnol, 2, 751-60. https://doi.org/10.1038/nnano.2007.387
  166. Pinto MMM, Sousa EP (2003). Natural and synthetic xanthonolignoids: chemistry and biological activities. Curr Med Chem, 10, 1-12.
  167. Pinto Reis C, Neufeld RJ, Ribeiro AJ, Veiga F (2006). Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine: Nanotechnol Biol Med, 2, 8-21. https://doi.org/10.1016/j.nano.2005.12.003
  168. Prior S, Gander B, Blarer N, et al (2002). In vitro phagocytosis and monocyte-macrophage activation with poly (lactide) and poly (lactide-co-glycolide) microspheres. Eur J Pharm Sci, 15, 197-207. https://doi.org/10.1016/S0928-0987(01)00218-4
  169. Prokop A, Davidson JM (2008). Nanovehicular intracellular delivery systems. J Pharm sci, 97, 3518-90. https://doi.org/10.1002/jps.21270
  170. Quintanar-Guerrero D, Allemann E, Fessi H, Doelker E (1998). Preparation techniques and mechanisms of formation of biodegradable nanoparticles from preformed polymers. Drug Dev Industrial Pharm, 24, 1113-28. https://doi.org/10.3109/03639049809108571
  171. Ranganath SH, Fu Y, Arifin DY, et al (2010). The use of submicron/nanoscale PLGA implants to deliver paclitaxel with enhanced pharmacokinetics and therapeutic efficacy in intracranial glioblastoma in mice. Biomaterials, 31, 5199-207. https://doi.org/10.1016/j.biomaterials.2010.03.002
  172. Ratajczak-Enselme M, Estebe JP, Dollo G, et al (2009). Epidural, intrathecal and plasma pharmacokinetic study of epidural ropivacaine in PLGA-microspheres in sheep model. Eur J Pharm Biopharm, 7, 54-61.
  173. Ratner BD, Johnston AB, Lenk TJ (1987). Biomaterial surfaces. J Biomed Mater Res, 21, 59. https://doi.org/10.1002/jbm.820210110
  174. Ravi Kumar MNV, Bakowsky U, Lehr CM (2004). Preparation and characterization of cationic PLGA nanospheres as DNA carriers. Biomaterials, 25, 1771-7. https://doi.org/10.1016/j.biomaterials.2003.08.069
  175. Reddy LH, Sharma RK, Chuttani K, Mishra AK, Murthy RR (2004). Etoposide-incorporated tripalmitin nanoparticles with different surface charge: formulation, characterization, radiolabeling, and biodistribution studies. The AAPS J, 6, 55-64. https://doi.org/10.1208/aapsj060323
  176. Ren F, Chen R, Wang Y, et al (2011). Paclitaxel-loaded poly (n-butylcyanoacrylate) nanoparticle delivery system to overcome multidrug resistance in ovarian cancer. Pharm Res, 28, 897-906. https://doi.org/10.1007/s11095-010-0346-9
  177. Ricci-Junior E, Marchetti JM (2006). Zinc (II) phthalocyanine loaded PLGA nanoparticles for photodynamic therapy use. Int J Pharm, 310, 187-95. https://doi.org/10.1016/j.ijpharm.2005.10.048
  178. Ringsdorf H. Structure and properties of pharmacologically active polymers. J Polym Sci, 51, 135-53.
  179. Roerdink FH, Dijkstra J, Spanjer HH, Scherphof GL (1984). Interaction of liposomes with hepatocytes and Kupffer cells in vivo and in vitro. Biochem Soc Trans, 12, 335.
  180. Rosenberg B (2006). Charles F. Kettring prize. Fundamental studies with cisplatin. Cancer, 55, 2303-16.
  181. Sahoo SK, Labhasetwar V (2003). Nanotech approaches to drug delivery and imaging. Drug Discov Today, 8, 1112-20. https://doi.org/10.1016/S1359-6446(03)02903-9
  182. Saiki I, Yoneda J, Azuma I, et al (1993). Role of aminopeptidase N (CD13) in tumor-cell invasion and extracellular matrix degradation. Inter J Cancer, 54, 137-43. https://doi.org/10.1002/ijc.2910540122
  183. Scaltriti M, Baselga J (2006). The epidermal growth factor receptor pathway: a model for targeted therapy. Clin Cancer Res, 12, 5268-72. https://doi.org/10.1158/1078-0432.CCR-05-1554
  184. Schliecker G, Schmidt C, Fuchs S, Kissel T (2003). Characterization of a homologous series of D, L-lactic acid oligomers; a mechanistic study on the degradation kinetics in vitro. Biomaterials, 24, 3835-44. https://doi.org/10.1016/S0142-9612(03)00243-6
  185. Scholes PD, Coombes AGA, Illum L, et al (1993). The preparation of sub-200 nm poly (lactide-co-glycolide) microspheres for site-specific drug delivery. J Control Release, 25, 145-53. https://doi.org/10.1016/0168-3659(93)90103-C
  186. Shadidi M, Sioud M (2003). Selective targeting of cancer cells using synthetic peptides. Drug Resist Updat, 6, 363-71. https://doi.org/10.1016/j.drup.2003.11.002
  187. Shah SS, Cha Y, Pitt CG (1992). Poly (glycolic acid-co-DL-lactic acid): diffusion or degradation controlled drug delivery? J Control Release, 18, 261-70. https://doi.org/10.1016/0168-3659(92)90171-M
  188. Shahani K, Swaminathan SK, Freeman D, et al (2010). Injectable sustained release microparticles of curcumin: a new concept for cancer chemoprevention. Cancer Res, 70, 4443-52. https://doi.org/10.1158/0008-5472.CAN-09-4362
  189. Shaikh J, Ankola DD, Beniwal V, Singh D, Kumar MNV (2009). Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer. Eur J Pharm Sci, 37, 223-30. https://doi.org/10.1016/j.ejps.2009.02.019
  190. Sharma AK, Zhang L, Li S, et al (2008). Prevention of MDR development in leukemia cells by micelle-forming polymeric surfactant. J Control Release, 131, 220-7. https://doi.org/10.1016/j.jconrel.2008.07.031
  191. Sharma G, Italia JL, Sonaje K, et al (2007). Biodegradable in situ gelling system for subcutaneous administration of ellagic acid and ellagic acid loaded nanoparticles: evaluation of their antioxidant potential against cyclosporine induced nephrotoxicity in rats. J Control Release, 118, 27-37. https://doi.org/10.1016/j.jconrel.2006.11.026
  192. Shenoy D, Little S, Langer R, Amiji M (2005). Poly (ethylene oxide)-modified poly ($\beta$-amino ester) nanoparticles as a pHsensitive system for tumor-targeted delivery of hydrophobic drugs: part 2. In vivo distribution and tumor localization studies. Pharm Res, 22, 2107-14. https://doi.org/10.1007/s11095-005-8343-0
  193. Shishodia S, Sethi G, Aggarwal BB (2005). Curcumin: getting back to the roots. Ann NY Acad Sci, 1056, 206-17. https://doi.org/10.1196/annals.1352.010
  194. Si-Shen F, Li M, Win KY, Guofeng H (2004). Nanoparticles of biodegradable polymers for clinical administration of paclitaxel. Curr Med Chem, 11, 413-24. https://doi.org/10.2174/0929867043455909
  195. Simamora P, Alvarez J.M, Yalkowsky S.H (2001). Solubilization of rapamycin. Int J Pharm, 213, 25-9. https://doi.org/10.1016/S0378-5173(00)00617-7
  196. Song KC, Lee HS, Choung IY, et al (2006). The effect of type of organic phase solvents on the particle size of poly (D, L-lactide-co-glycolide) nanoparticles. Colloids and Surfaces A: Physicochem Eng Asp, 276, 162-167. https://doi.org/10.1016/j.colsurfa.2005.10.064
  197. Song X, Zhao Y, Wu W, et al (2008). PLGA nanoparticles simultaneously loaded with vincristine sulfate and verapamil hydrochloride: Systematic study of particle size and drug entrapment efficiency. Int J Pharm, 350, 320-9. https://doi.org/10.1016/j.ijpharm.2007.08.034
  198. Song XR, Cai Z, Zheng Y, et al (2009). Reversion of multidrug resistance by co-encapsulation of vincristine and verapamil in PLGA nanoparticles. Eur J Pharm Sci, 37, 300-5. https://doi.org/10.1016/j.ejps.2009.02.018
  199. Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE (2001). Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release, 70, 1-20. https://doi.org/10.1016/S0168-3659(00)00339-4
  200. Stolnik S, Illum L, Davis SS (1995). Long circulating microparticulate drug carriers. Adv Drug Deliv Rev, 16, 195-214. https://doi.org/10.1016/0169-409X(95)00025-3
  201. Storm G, Belliot SO, Daemen T, Lasic DD (1995). Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system. Adv Drug Deliv Rev, 17, 31-48. https://doi.org/10.1016/0169-409X(95)00039-A
  202. Studer M, Briel M, Leimenstoll B, Glass TR, Bucher HC (2005). Effect of different antilipidemic agents and diets on mortality: a systematic review. Arch Intern Med, 165, 725. https://doi.org/10.1001/archinte.165.7.725
  203. Sun Y, Wang JC, Zhang X, et al (2008). Synchronic release of two hormonal contraceptives for about one month from the PLGA microspheres: in vitro and in vivo studies. J Control Release, 129, 192-9. https://doi.org/10.1016/j.jconrel.2008.04.022
  204. Szakacs G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM (2006). Targeting multidrug resistance in cancer. Nat Rev Drug Discov, 5, 219-34. https://doi.org/10.1038/nrd1984
  205. Tahara K, Sakai T, Yamamoto H, Takeuchi H, Hirashima N, Kawashima Y (2009). Improved cellular uptake of chitosanmodified PLGA nanospheres by A549 cells. Int J Pharm, 382, 198-204. https://doi.org/10.1016/j.ijpharm.2009.07.023
  206. Tang N, Du G, Wang N, et al (2007). Improving penetration in tumors with nanoassemblies of phospholipids and doxorubicin. J Natl Cancer Inst, 99, 1004-15. https://doi.org/10.1093/jnci/djm027
  207. Tannock IF, Rotin D (1989). Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res, 49, 4373-84.
  208. Teicher BA (2000). Molecular targets and cancer therapeutics: discovery, development and clinical validation. Drug Resist Updat, 3, 67-73. https://doi.org/10.1054/drup.2000.0123
  209. Teixeira M, Alonso MJ, Pinto MMM, Barbosa CM (2005). Development and characterization of PLGA nanospheres and nanocapsules containing xanthone and 3-methoxyxanthone. Eur J Pharm Biopharm, 59, 491-500. https://doi.org/10.1016/j.ejpb.2004.09.002
  210. Thioune O, Fessi H, Devissaguet JP, Puisieux F (1997). Preparation of pseudolatex by nanoprecipitation: influence of the solvent nature on intrinsic viscosity and interaction constant. Int J Pharm, 146, 233-8. https://doi.org/10.1016/S0378-5173(96)04830-2
  211. Tice TR, Gilley RM (1985). Preparation of injectable controlledrelease microcapsules by a solvent-evaporation process. J Control Release, 2, 343-52. https://doi.org/10.1016/0168-3659(85)90056-2
  212. Tobio M, Sanchez A, Vila A, et al (2000). The role of PEG on the stability in digestive fluids and in vivo fate of PEG-PLA nanoparticles following oral administration. Colloids and Surfaces B: Biointerfaces, 18, 315-23. https://doi.org/10.1016/S0927-7765(99)00157-5
  213. Torchilin VP (2000). Drug targeting. Eur J Pharm Sci, 11, S81-S91. https://doi.org/10.1016/S0928-0987(00)00166-4
  214. Torchilin VP, Trubetskoy VS (1995). Which polymers can make nanoparticulate drug carriers long-circulating? Adv Drug Deliv Rev, 16, 141-55. https://doi.org/10.1016/0169-409X(95)00022-Y
  215. Ueda M, Iwara A, Kreuter J (1998). Influence of the preparation methods on the drug release behaviour of loperamide-loaded nanoparticles. J Microencapsul, 15, 361-72. https://doi.org/10.3109/02652049809006863
  216. Utreja P, Jain S, Tiwary AK (2010). Novel drug delivery systems for sustained and targeted delivery of anti-cancer drugs: current status and future prospects. Curr Drug Deliv, 7, 152. https://doi.org/10.2174/156720110791011783
  217. van Vlerken LE, Amiji MM (2006). Multi-functional polymeric nanoparticles for tumour-targeted drug delivery. Expert Opin Drug Deliv, 3, 205-16. https://doi.org/10.1517/17425247.3.2.205
  218. Vasir J.K, Labhasetwar V (2007). Biodegradable nanoparticles for cytosolic delivery of therapeutics. Adv Drug Deliv Rev, 59, 718-28. https://doi.org/10.1016/j.addr.2007.06.003
  219. Vasir JK, Labhasetwar V (2008). Quantification of the force of nanoparticle-cell membrane interactions and its influence on intracellular trafficking of nanoparticles. Biomaterials, 29, 4244-52. https://doi.org/10.1016/j.biomaterials.2008.07.020
  220. Vauthier C, Bouchemal K (2009). Methods for the preparation and manufacture of polymeric nanoparticles. Pharm Res, 26, 1025-58. https://doi.org/10.1007/s11095-008-9800-3
  221. Vert M, Mauduit J, Li S (1994). Biodegradation of PLA/GA polymers: increasing complexity. Biomaterials, 15, 1209-13. https://doi.org/10.1016/0142-9612(94)90271-2
  222. Vila A, Sanchez A, Tobio M, Calvo P, Alonso MJ (2002). Design of biodegradable particles for protein delivery. J Control Release, 78, 15-24. https://doi.org/10.1016/S0168-3659(01)00486-2
  223. Wang YM, Sato H, Adachi I, Horikoshi I (1996). Preparation and characterization of poly (lactic-co-glycolic acid) microspheres for targeted delivery of a novel anticancer agent, taxol. Chem Pharm Bull, 44, 1935. https://doi.org/10.1248/cpb.44.1935
  224. Wickline SA, Neubauer AM, Winter P, Caruthers S, Lanza G (2006). Applications of nanotechnology to atherosclerosis, thrombosis, and vascular biology. Arterioscler Thromb Vasc Biol, 26, 435-41.
  225. Wickline SA, Neubauer AM, Winter PM, Caruthers SD, Lanza GM (2007). Molecular imaging and therapy of atherosclerosis with targeted nanoparticles.J Magn Reson Imaging, 25, 667-80. https://doi.org/10.1002/jmri.20866
  226. Wischke C, Schwendeman SP (2008). Principles of encapsulating hydrophobic drugs in PLA/PLGA microparticles. Int J Pharm, 364, 298-327. https://doi.org/10.1016/j.ijpharm.2008.04.042
  227. Wong HM, Wang JJ, Wang CH (2001). In vitro sustained release of human immunoglobulin G from biodegradable microspheres. Ind Eng Chem Res, 40, 933-48. https://doi.org/10.1021/ie0006256
  228. Xiong Y, Zeng YS, Zeng CG, et al (2009). Synaptic transmission of neural stem cells seeded in 3-dimensional PLGA scaffolds. Biomaterials, 30, 3711-22. https://doi.org/10.1016/j.biomaterials.2009.03.046
  229. Xu T, Zhang N, Nichols HL, Shi D, Wen X (2007). Modification of nanostructured materials for biomedical applications. Mater Sci Eng, 27, 579-94. https://doi.org/10.1016/j.msec.2006.05.029
  230. Yallapu MM, Gupta BK, Jaggi M, Chauhan SC (2010). Fabrication of curcumin encapsulated PLGA nanoparticles for improved therapeutic effects in metastatic cancer cells. J Colloid Interface Sci, 351, 19-29. https://doi.org/10.1016/j.jcis.2010.05.022
  231. Yang A, Yang L, Liu W, et al (2007). Tumor necrosis factor alpha blocking peptide loaded PEG-PLGA nanoparticles: Preparation and< i> in vitro evaluation. Int J Pharm, 331, 123-32. https://doi.org/10.1016/j.ijpharm.2006.09.015
  232. Yezhelyev MV, Gao X, Xing Y, et al (2006). Emerging use of nanoparticles in diagnosis and treatment of breast cancer. Lancet Oncol, 7, 657-67. https://doi.org/10.1016/S1470-2045(06)70793-8
  233. Yoo HS, Lee KH, Oh JE, Park TG (2000). In vitro and in vivo anti-tumor activities of nanoparticles based on doxorubicin- PLGA conjugates. J Control Release, 68, 419-31. https://doi.org/10.1016/S0168-3659(00)00280-7
  234. Zambaux MF, Bonneaux F, Gref R, et al (1998). Influence of experimental parameters on the characteristics of poly (lactic acid) nanoparticles prepared by a double emulsion method. J Control Release, 50, 31-40. https://doi.org/10.1016/S0168-3659(97)00106-5
  235. Zeisser-Labouebe M, Lange N, Gurny R, Delie F (2006). Hypericin-loaded nanoparticles for the photodynamic treatment of ovarian cancer. Int J Pharm, 326, 174-81. https://doi.org/10.1016/j.ijpharm.2006.07.012
  236. Zhang H, Cui W, Bei J, Wang S (2006). Preparation of poly (lactide-< i> co-glycolide-< i> co-caprolactone) nanoparticles and their degradation behaviour in aqueous solution. Polym Degrad Stab, 91, 1929-36. https://doi.org/10.1016/j.polymdegradstab.2006.03.004
  237. Zhang Z, Feng SS (2006). The drug encapsulation efficiency, in vitro drug release, cellular uptake and cytotoxicity of paclitaxel-loaded poly (lactide)-tocopheryl polyethylene glycol succinate nanoparticles. Biomaterials, 27, 4025-33. https://doi.org/10.1016/j.biomaterials.2006.03.006
  238. Zhu G, Schwendeman SP (2000). Stabilization of proteins encapsulated in cylindrical poly (lactide-co-glycolide) implants: mechanism of stabilization by basic additives. Pharm Res, 17, 351-7. https://doi.org/10.1023/A:1007513425337

Cited by

  1. Nanoparticle Induced Oxidative Stress in Cancer Cells: Adding New Pieces to an Incomplete Jigsaw Puzzle vol.15, pp.12, 2014, https://doi.org/10.7314/APJCP.2014.15.12.4739
  2. Trichostatin A-induced Apoptosis is Mediated by Krüppel-like Factor 4 in Ovarian and Lung Cancer vol.15, pp.16, 2014, https://doi.org/10.7314/APJCP.2014.15.16.6581
  3. Preparation of 5-fluorouracil-loaded Nanoparticles and Study of Interaction with Gastric Cancer Cells vol.15, pp.18, 2014, https://doi.org/10.7314/APJCP.2014.15.18.7611
  4. Implementation of Proteomics for Cancer Research: Past, Present, and Future vol.15, pp.6, 2014, https://doi.org/10.7314/APJCP.2014.15.6.2433
  5. Current Status and Future Perspectives of Sonodynamic Therapy and Sonosensitiers vol.16, pp.11, 2015, https://doi.org/10.7314/APJCP.2015.16.11.4489
  6. Preparation and Evaluation of Chrysin Encapsulated in PLGA-PEG Nanoparticles in the T47-D Breast Cancer Cell Line vol.16, pp.9, 2015, https://doi.org/10.7314/APJCP.2015.16.9.3753
  7. Engineering Biomaterial–Drug Conjugates for Local and Sustained Chemotherapeutic Delivery vol.26, pp.7, 2015, https://doi.org/10.1021/acs.bioconjchem.5b00046
  8. Configuration-dependent Presentation of Multivalent IL-15:IL-15Rα Enhances the Antigen-specific T Cell Response and Anti-tumor Immunity vol.291, pp.17, 2016, https://doi.org/10.1074/jbc.M115.695304
  9. New approaches to targeted drug delivery to tumour cells vol.84, pp.1, 2015, https://doi.org/10.1070/RCR4468
  10. Comparison, synthesis and evaluation of anticancer drug-loaded polymeric nanoparticles on breast cancer cell lines pp.2169-141X, 2015, https://doi.org/10.3109/21691401.2015.1008510
  11. Biomedical and biological applications of quantum dots pp.2169-141X, 2015, https://doi.org/10.3109/21691401.2014.998826
  12. Magnetic nanoparticles as potential candidates for biomedical and biological applications pp.2169-141X, 2015, https://doi.org/10.3109/21691401.2014.998832
  13. Magnetic nanoparticles: Applications in gene delivery and gene therapy pp.2169-141X, 2015, https://doi.org/10.3109/21691401.2015.1014093
  14. Anthracycline Drugs on Modified Surface of Quercetin-Loaded Polymer Nanoparticles: A Dual Drug Delivery Model for Cancer Treatment vol.11, pp.5, 2016, https://doi.org/10.1371/journal.pone.0155710
  15. Nanochemistry and Nanomedicine for Nanoparticle-based Diagnostics and Therapy vol.116, pp.5, 2016, https://doi.org/10.1021/acs.chemrev.5b00148
  16. Upregulation of Mir-34a in AGS Gastric Cancer Cells by a PLGA-PEG-PLGA Chrysin Nano Formulation vol.16, pp.18, 2016, https://doi.org/10.7314/APJCP.2015.16.18.8259
  17. Nanoparticle-Based Topical Ophthalmic Gel Formulation for Sustained Release of Hydrocortisone Butyrate vol.17, pp.2, 2016, https://doi.org/10.1208/s12249-015-0354-5
  18. Drug delivery and nanodetection in lung cancer vol.44, pp.2, 2016, https://doi.org/10.3109/21691401.2014.975237
  19. Current methods for synthesis of magnetic nanoparticles vol.44, pp.2, 2016, https://doi.org/10.3109/21691401.2014.982802
  20. Improved Treatment of Pancreatic Cancer With Drug Delivery Nanoparticles Loaded With a Novel AKT/PDK1 Inhibitor vol.45, pp.8, 2016, https://doi.org/10.1097/MPA.0000000000000607
  21. Multifunctional PLGA/Parylene C Coating for Implant Materials: An Integral Approach for Biointerface Optimization vol.8, pp.34, 2016, https://doi.org/10.1021/acsami.6b08025
  22. Studying the effect of physically-adsorbed coating polymers on the cytotoxic activity of optimized bisdemethoxycurcumin loaded-PLGA nanoparticles vol.105, pp.5, 2017, https://doi.org/10.1002/jbm.a.36028
  23. A growing world of small things: a brief review on the nanostructured vaccines vol.12, pp.12, 2017, https://doi.org/10.2217/fvl-2017-0086
  24. -glycolic) Acid Microparticles Fabricated by Coaxial Electrospray: Validation of Enhanced Encapsulation Efficiency and Bioavailability vol.14, pp.12, 2017, https://doi.org/10.1021/acs.molpharmaceut.7b00862
  25. Hydrogel-based three-dimensional cell culture for organ-on-a-chip applications vol.33, pp.3, 2017, https://doi.org/10.1002/btpr.2457
  26. Preparation and characterization of PLGA-β-CD polymeric nanoparticles containing methotrexate and evaluation of their effects on T47D cell line vol.45, pp.3, 2017, https://doi.org/10.3109/21691401.2016.1160915
  27. A polymeric temozolomide nanocomposite against orthotopic glioblastoma xenograft: tumor-specific homing directed by nestin vol.9, pp.30, 2017, https://doi.org/10.1039/C7NR00305F
  28. Paclitaxel-loaded PLA/PEG/fluorescein anticancer agent prepared by Ugi reaction pp.1563-535X, 2018, https://doi.org/10.1080/00914037.2017.1378884
  29. Nano-encapsulated metformin-curcumin in PLGA/PEG inhibits synergistically growth and hTERT gene expression in human breast cancer cells pp.2169-141X, 2017, https://doi.org/10.1080/21691401.2017.1347879
  30. Development and characterization dual responsive magnetic nanocomposites for targeted drug delivery systems pp.2169-141X, 2017, https://doi.org/10.1080/21691401.2017.1360323
  31. Nanoparticle-Mediated Expression of a Wnt Pathway Inhibitor Ameliorates Ocular Neovascularization vol.35, pp.4, 2015, https://doi.org/10.1161/ATVBAHA.114.304627
  32. Bacterial-Derived Polymer Poly-y-Glutamic Acid (y-PGA)-Based Micro/Nanoparticles as a Delivery System for Antimicrobials and Other Biomedical Applications vol.18, pp.2, 2017, https://doi.org/10.3390/ijms18020313
  33. Covalent modification of pericardial patches for sustained rapamycin delivery inhibits venous neointimal hyperplasia vol.7, pp.1, 2017, https://doi.org/10.1038/srep40142
  34. evaluation of magnetic nanoparticles modified with PCL–PEG–PCL for controlled delivery of 5FU pp.2169-141X, 2018, https://doi.org/10.1080/21691401.2018.1439839
  35. Nanoscale modification of chrysin for improved of therapeutic efficiency and cytotoxicity pp.2169-141X, 2018, https://doi.org/10.1080/21691401.2018.1434661
  36. PLGA-Based Nanoparticles in Cancer Treatment vol.9, pp.1663-9812, 2018, https://doi.org/10.3389/fphar.2018.01260
  37. Universal influenza vaccines: from viruses to nanoparticles vol.17, pp.11, 2018, https://doi.org/10.1080/14760584.2018.1541408
  38. -glycolic acid) nanoparticles for targeted therapy of miR-21-inhibited ovarian cancer cells vol.13, pp.21, 2018, https://doi.org/10.2217/nnm-2018-0205
  39. Development of novel PLGA nanoparticles with co-encapsulation of docetaxel and abiraterone acetate for a highly efficient delivery into tumor cells pp.15524973, 2018, https://doi.org/10.1002/jbm.b.34208
  40. Evaluation of the Uptake of PLGA-PEG Nanoparticles by Human Cancer Cells vol.13, pp.1-2, 2018, https://doi.org/10.1134/S1995078018010147
  41. Preparation of Poly (dl-Lactide-co-Glycolide) Nanoparticles Encapsulated with Periglaucine A and Betulinic Acid for In Vitro Anti-Acanthamoeba and Cytotoxicity Activities vol.7, pp.3, 2018, https://doi.org/10.3390/pathogens7030062
  42. Itraconazole encapsulated PLGA-nanoparticles covered with mannose as potential candidates against leishmaniasis pp.15524973, 2018, https://doi.org/10.1002/jbm.b.34161
  43. Gamma oryzanol loaded microspheres with improved bioavailability vol.12, pp.17, 2018, https://doi.org/10.5897/AJPP2018.4914
  44. Design and evaluation of glomerulus mesangium-targeted PEG-PLGA nanoparticles loaded with dexamethasone acetate pp.1745-7254, 2018, https://doi.org/10.1038/s41401-018-0052-4
  45. Construction of PLGA/JNK3-shRNA nanoparticles and their protective role in hippocampal neuron apoptosis induced by oxygen and glucose deprivation vol.8, pp.36, 2018, https://doi.org/10.1039/C8RA00679B
  46. Small PLGA nanocapsules Co-encapsulating copper sulfide nanodots and fluorocarbon compound for photoacoustic imaging-guided HIFU synergistic therapy vol.8, pp.9, 2018, https://doi.org/10.1039/C7RA12074E
  47. Treatment of pancreatic ductal adenocarcinoma with tumor antigen specific-targeted delivery of paclitaxel loaded PLGA nanoparticles vol.18, pp.1, 2018, https://doi.org/10.1186/s12885-018-4393-7
  48. Comparative evaluation of hesperetin loaded nanoparticles for anticancer activity against C6 glioma cancer cells vol.47, pp.1, 2019, https://doi.org/10.1080/21691401.2018.1556213