DOI QR코드

DOI QR Code

Signal Transducer and Activator of Transcription 3 - A Promising Target in Colitis-Associated Cancer

  • Pandurangan, Ashok Kumar (Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia) ;
  • Esa, Norhaizan Mohd (Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia)
  • Published : 2014.01.30

Abstract

Colorectal cancer (CRC) is the third most common malignancy and fourth most common cause of cancer mortality worldwide. Untreated chronic inflammation in the intestine ranks among the top three high-risk conditions for colitis-associated colorectal cancer (CAC). Signal Transducer and Activator of Transcription 3 (STAT3) protein is a member of the STAT family of transcription factors often deregulated in CRC. In this review, we try to emphasize the critical role of STAT3 in CAC as well as the crosstalk of STAT3 with inflammatory cytokines, nuclear factor (NF)-${\kappa}B$, PI3K/Akt, Mammalian Target of Rapamycin (mTOR), Notch, $Wnt/{\beta}$-catenin and microRNA (MiR) pathways. STAT3 is considered as a primary drug target to treat CAC in humans and rodents. Also we updated the findings for inhibitors of STAT3 with regard to effects on tumorigenesis. This review will hopefully provide insights on the use of STAT3 as a therapeutic target in CAC.

Keywords

References

  1. Abraham C, Cho J (2009). Interleukin-23/Th17 pathways and inflammatory bowel disease. Inflamm Bowel Dis, 15, 1090-100. https://doi.org/10.1002/ibd.20894
  2. Aggarwal BB, Vijayalekshmi RV, Sung B (2009). Targeting inflammatory pathways for prevention and therapy of cancer: short-term friend, long-term foe. Clin Cancer Res, 15, 425-30. https://doi.org/10.1158/1078-0432.CCR-08-0149
  3. Armanious H, Gelebart P, Mackey J, et al (2010). STAT3 upregulates the protein expression and transcriptional activity of beta-catenin in breast cancer. Int J Clin Exp Pathol, 3, 654-64.
  4. Ashokkumar P, Sudhandiran G (2008). Protective role of luteolin on the status of lipid peroxidation and antioxidant defense against azoxymethane-induced experimental colon carcinogenesis. Biomed Pharmacother, 62, 590-7. https://doi.org/10.1016/j.biopha.2008.06.031
  5. Ashokkumar P, Sudhandiran G (2011). Luteolin inhibits cell proliferation during Azoxymethane-induced experimental colon carcinogenesis via Wnt/ beta-catenin pathway. Invest New Drugs, 29, 273-84. https://doi.org/10.1007/s10637-009-9359-9
  6. Atreya R, Mudter J, Finotto S, et al (2000). Blockade of interleukin 6 trans signaling suppresses T-cell resistance against apoptosis in chronic intestinal inflammation: evidence in crohn disease and experimental colitis in vivo. Nat Med, 6, 583-8. https://doi.org/10.1038/75068
  7. Atreya R, Neurath MF (2008). Signaling molecules: the pathogenic role of the IL-6/STAT-3 trans signaling pathway in intestinal inflammation and in colonic cancer. Curr Drug Targets, 9, 369-74. https://doi.org/10.2174/138945008784221116
  8. Bartel DP (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116, 281-97. https://doi.org/10.1016/S0092-8674(04)00045-5
  9. Baud V, Karin M (2009). Is NF-kappaB a good target for cancer therapy? Hopes and pitfalls. Nat Rev Drug Discov, 8, 33-40. https://doi.org/10.1038/nrd2781
  10. Becker C, Fantini MC, Schramm C, et al (2004). TGF-beta suppresses tumor progression in colon cancer by inhibition of IL-6 trans-signaling. Immunity, 21, 491-501. https://doi.org/10.1016/j.immuni.2004.07.020
  11. Becker C, Fantini MC, Wirtz S, et al (2005). IL-6 signaling promotes tumor growth in colorectal cancer. Cell Cycle, 4, 217-20.
  12. Bernstein CN, Blanchard JF, Kliewer E, et al (2001). Cancer risk in patients with inflammatory bowel disease: a populationbased study. Cancer, 91, 854-62. https://doi.org/10.1002/1097-0142(20010215)91:4<854::AID-CNCR1073>3.0.CO;2-Z
  13. Bollrath J, Phesse TJ, von Burstin VA, et al (2009). gp130-mediated Stat3 activation in enterocytes regulates cell survival and cell-cycle progression during colitis-associated tumorigenesis. Cancer Cell, 15, 91-102. https://doi.org/10.1016/j.ccr.2009.01.002
  14. Brand S (2009). Crohn's disease: Th1, Th17 or both? The change of a paradigm: new immunological and genetic insights implicate Th17 cells in the pathogenesis of Crohn's disease. Gut, 58, 1152-67. https://doi.org/10.1136/gut.2008.163667
  15. Bray SJ (2006). Notch signalling: a simple pathway becomes complex. Nat Rev Mol Cell Biol, 7, 678-89. https://doi.org/10.1038/nrm2009
  16. Bromberg JF, Wrzeszczynska MH, Devgan G, et al (1999). Stat3 as an oncogene. Cell, 98, 295-303. https://doi.org/10.1016/S0092-8674(00)81959-5
  17. Buettner R, Mora LB, Jove R (2002). Activated STAT signaling in human tumors provides novel molecular targets for therapeutic intervention. Clin Cancer Res, 8, 945-54.
  18. Caprioli F, Sarra M, Caruso R, et al (2008). Autocrine regulation of IL-21 production in human T lymphocytes. J Immunol, 180, 1800-7. https://doi.org/10.4049/jimmunol.180.3.1800
  19. Carthew RW (2006). Gene regulation by microRNAs. Curr Opin Genet Dev, 16, 203-8. https://doi.org/10.1016/j.gde.2006.02.012
  20. Catlett-Falcone R, Landowski TH, Oshiro MM, et al (1999). Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity, 10, 105-15. https://doi.org/10.1016/S1074-7613(00)80011-4
  21. Chen Q, Wang H, Liu Y, et al (2012). Inducible microRNA-223 down-regulation promotes TLR-triggered IL-6 and IL-1beta production in macrophages by targeting STAT3. PLoS ONE, 7, 42971. https://doi.org/10.1371/journal.pone.0042971
  22. Corvinus FM, Orth C, Moriggl R, et al (2005). Persistent STAT3 activation in colon cancer is associated with enhanced cell proliferation and tumor growth. Neoplasia, 7, 545-55. https://doi.org/10.1593/neo.04571
  23. Coussens LM, Werb Z (2002). Inflammation and cancer. Nature, 420, 860-7. https://doi.org/10.1038/nature01322
  24. Danese S, Mantovani A (2010). Inflammatory bowel disease and intestinal cancer: a paradigm of the Yin-Yang interplay between inflammation and cancer. Oncogene, 29, 3313-23. https://doi.org/10.1038/onc.2010.109
  25. Darnell JE, Jr (2002). Transcription factors as targets for cancer therapy. Nat Rev Cancer, 2, 740-9. https://doi.org/10.1038/nrc906
  26. Dashwood RH, Suzui M, Nakagama H, et al (1998). High frequency of beta-catenin (ctnnb1) mutations in the colon tumors induced by two heterocyclic amines in the F344 rat. Cancer Res, 58, 1127-9.
  27. De Nitto D, Sarra M, Pallone F, et al (2010). Interleukin-21 triggers effector cell responses in the gut. World J Gastroenterol, 16, 3638-41. https://doi.org/10.3748/wjg.v16.i29.3638
  28. Deng L, Zhou JF, Sellers RS, et al (2010). A novel mouse model of inflammatory bowel disease links mammalian target of rapamycin-dependent hyperproliferation of colonic epithelium to inflammation-associated tumorigenesis. Am J Pathol, 176, 952-67. https://doi.org/10.2353/ajpath.2010.090622
  29. Dill MT, Tornillo L, Fritzius T, et al (2013). Constitutive Notch2 signaling induces hepatic tumors in mice. Hepatology, 57, 1607-19. https://doi.org/10.1002/hep.26165
  30. Dontu G, Jackson KW, McNicholas E, et al (2004). Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Res, 6, 605-15. https://doi.org/10.1186/bcr920
  31. Fiala ES, Sohn OS, Hamilton SR (1987). Effects of chronic dietary ethanol on in vivo and in vitro metabolism of methylazoxymethanol and on methylazoxymethanolinduced DNA methylation in rat colon and liver. Cancer Res, 47, 5939-43.
  32. Fina D, Sarra M, Fantini MC, et al (2008). Regulation of gut inflammation and th17 cell response by interleukin-21. Gastroenterology, 134, 1038-48. https://doi.org/10.1053/j.gastro.2008.01.041
  33. Fre S, Pallavi SK, Huyghe M, et al (2009). Notch and Wnt signals cooperatively control cell proliferation and tumorigenesis in the intestine. Proc Natl Acad Sci U S A, 106, 6309-14. https://doi.org/10.1073/pnas.0900427106
  34. Friedman RC, Farh KK, Burge CB, et al (2009). Most mammalian mRNAs are conserved targets of microRNAs. Genome Res, 19, 92-105.
  35. Fujino S, Andoh A, Bamba S, et al (2003). Increased expression of interleukin 17 in inflammatory bowel disease. Gut, 52, 65-70. https://doi.org/10.1136/gut.52.1.65
  36. Garg P, Sarma D, Jeppsson S, et al (2010). Matrix metalloproteinase-9 functions as a tumor suppressor in colitis-associated cancer. Cancer Res, 70, 792-801. https://doi.org/10.1158/0008-5472.CAN-09-3166
  37. Genta RM (2003). The gastritis connection: prevention and early detection of gastric neoplasms. J Clin Gastroenterol, 36, 61-2. https://doi.org/10.1097/00004836-200305001-00010
  38. Gregorieff A, Clevers H (2005). Wnt signaling in the intestinal epithelium: from endoderm to cancer. Genes Dev, 19, 877-90. https://doi.org/10.1101/gad.1295405
  39. Grivennikov S, Karin E, Terzic J, et al (2009). IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell, 15, 103-13. https://doi.org/10.1016/j.ccr.2009.01.001
  40. Grivennikov S, Karin M (2008). Autocrine IL-6 signaling: a key event in tumorigenesis? Cancer Cell, 13, 7-9. https://doi.org/10.1016/j.ccr.2007.12.020
  41. Harris TJ, Grosso JF, Yen HR, et al (2007). Cutting edge: An in vivo requirement for STAT3 signaling in TH17 development and TH17-dependent autoimmunity. J Immunol, 179, 4313-7. https://doi.org/10.4049/jimmunol.179.7.4313
  42. He G, Karin M (2011). NF-kappaB and STAT3 - key players in liver inflammation and cancer. Cell Res, 21, 159-68. https://doi.org/10.1038/cr.2010.183
  43. He TC, Sparks AB, Rago C, et al (1998). Identification of c-MYC as a target of the APC pathway. Science, 281, 1509-12. https://doi.org/10.1126/science.281.5382.1509
  44. Heikkila K, Ebrahim S, Lawlor DA (2008). Systematic review of the association between circulating interleukin-6 (IL-6) and cancer. Eur J Cancer, 44, 937-945. https://doi.org/10.1016/j.ejca.2008.02.047
  45. Heitzler P, Bourouis M, Ruel L, et al (1996). Genes of the Enhancer of split and achaete-scute complexes are required for a regulatory loop between Notch and Delta during lateral signalling in Drosophila. Development, 122, 161-71.
  46. Hirahara K, Ghoreschi K, Laurence A, et al (2010). Signal transduction pathways and transcriptional regulation in Th17 cell differentiation. Cytokine Growth Factor Rev, 21, 425-34. https://doi.org/10.1016/j.cytogfr.2010.10.006
  47. Hyun YS, Han DS, Lee AR, et al (2012). Role of IL-17A in the development of colitis-associated cancer. Carcinogenesis, 33, 931-6. https://doi.org/10.1093/carcin/bgs106
  48. Iliopoulos D, Jaeger SA, Hirsch HA, et al (2010). STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer. Mol Cell, 39, 493-506. https://doi.org/10.1016/j.molcel.2010.07.023
  49. Itzkowitz SH, Yio X (2004). Inflammation and cancer IV. Colorectal cancer in inflammatory bowel disease: the role of inflammation. Am J Physiol Gastrointest Liver Physiol, 287, 7-17. https://doi.org/10.1152/ajpgi.00079.2004
  50. Ivanov, II, McKenzie BS, Zhou L, et al (2006). The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell, 126, 1121-33. https://doi.org/10.1016/j.cell.2006.07.035
  51. Jensen J, Pedersen EE, Galante P, et al (2000). Control of endodermal endocrine development by Hes-1. Nat Genet, 24, 36-44. https://doi.org/10.1038/71657
  52. Jin S, Mutvei AP, Chivukula IV, et al (2012). Non-canonical Notch signaling activates IL-6/JAK/STAT signaling in breast tumor cells and is controlled by p53 and IKKalpha/IKKbeta. Oncogene, 26, 517.
  53. Johnson GE, Ivanov VN, Hei TK (2008). Radiosensitization of melanoma cells through combined inhibition of protein regulators of cell survival. Apoptosis, 13, 790-802. https://doi.org/10.1007/s10495-008-0212-y
  54. Jump RL, Levine AD (2004). Mechanisms of natural tolerance in the intestine: implications for inflammatory bowel disease. Inflamm Bowel Dis, 10, 462-78. https://doi.org/10.1097/00054725-200407000-00023
  55. Kanai T, Nemoto Y, Kamada N, et al (2009). Homeostatic (IL-7) and effector (IL-17) cytokines as distinct but complementary target for an optimal therapeutic strategy in inflammatory bowel disease. Curr Opin Gastroenterol, 25, 306-13. https://doi.org/10.1097/MOG.0b013e32832bc627
  56. Kargl J, Haybaeck J, Stancic A, et al (2013). O-1602, an atypical cannabinoid, inhibits tumor growth in colitis-associated colon cancer through multiple mechanisms. J Mol Med, 91, 449-58. https://doi.org/10.1007/s00109-012-0957-1
  57. Karin M, Greten FR (2005). NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol, 5, 749-759. https://doi.org/10.1038/nri1703
  58. Kathiria AS, Neumann WL, Rhees J, et al (2012). Prohibitin attenuates colitis-associated tumorigenesis in mice by modulating p53 and STAT3 apoptotic responses. Cancer Res, 72, 5778-89. https://doi.org/10.1158/0008-5472.CAN-12-0603
  59. Kaur M, Velmurugan B, Tyagi A, et al (2010). Silibinin suppresses growth of human colorectal carcinoma SW480 cells in culture and xenograft through down-regulation of beta-catenin-dependent signaling. Neoplasia, 12, 415-24. https://doi.org/10.1593/neo.10188
  60. Kawada M, Seno H, Uenoyama Y, Set al (2006). Signal transducers and activators of transcription 3 activation is involved in nuclear accumulation of beta-catenin in colorectal cancer. Cancer Res, 66, 2913-7. https://doi.org/10.1158/0008-5472.CAN-05-3460
  61. Kawanishi S, Hiraku Y, Pinlaor S, et al (2006). Oxidative and nitrative DNA damage in animals and patients with inflammatory diseases in relation to inflammation-related carcinogenesis. Biol Chem, 387, 365-72.
  62. Kim JH, Kim JE, Liu HY, et al (2008). Regulation of interleukin-6-induced hepatic insulin resistance by mammalian target of rapamycin through the STAT3-SOCS3 pathway. J Biol Chem, 283, 708-15. https://doi.org/10.1074/jbc.M708568200
  63. Kobayashi T, Okamoto S, Hisamatsu T, et al (2008). IL23 differentially regulates the Th1/Th17 balance in ulcerative colitis and Crohn's disease. Gut, 57, 1682-9. https://doi.org/10.1136/gut.2007.135053
  64. Korinek V, Barker N, Morin PJ, et al (1997). Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC-/- colon carcinoma. Science, 275, 1784-7. https://doi.org/10.1126/science.275.5307.1784
  65. Korn T, Bettelli E, Oukka M, et al (2009). IL-17 and Th17 Cells. Annu Rev Immunol, 27, 485-517. https://doi.org/10.1146/annurev.immunol.021908.132710
  66. Korn T, Oukka M, Kuchroo V, et al (2007). Th17 cells: effector T cells with inflammatory properties. Semin Immunol, 19, 362-71. https://doi.org/10.1016/j.smim.2007.10.007
  67. Kozomara A, Griffiths-Jones S (2011). miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res, 39, 30. https://doi.org/10.1093/nar/gkq736
  68. Kundu JK, Surh YJ (2008). Inflammation: gearing the journey to cancer. Mutat Res, 659, 15-30. https://doi.org/10.1016/j.mrrev.2008.03.002
  69. Kusaba T, Nakayama T, Yamazumi K, et al (2005). Expression of p-STAT3 in human colorectal adenocarcinoma and adenoma; correlation with clinicopathological factors. J Clin Pathol, 58, 833-8. https://doi.org/10.1136/jcp.2004.023416
  70. Kusaba T, Nakayama T, Yamazumi K, et al (2006). Activation of STAT3 is a marker of poor prognosis in human colorectal cancer. Oncol Rep, 15, 1445-51.
  71. Lakatos PL, Lakatos L (2008). Risk for colorectal cancer in ulcerative colitis: changes, causes and management strategies. World J Gastroenterol, 14, 3937-47. https://doi.org/10.3748/wjg.14.3937
  72. Lassmann S, Schuster I, Walch A, et al (2007). STAT3 mRNA and protein expression in colorectal cancer: effects on STAT3-inducible targets linked to cell survival and proliferation. J Clin Pathol, 60, 173-9.
  73. Lee H, Herrmann A, Deng JH, et al (2009). Persistently activated Stat3 maintains constitutive NF-kappaB activity in tumors. Cancer Cell, 15, 283-93. https://doi.org/10.1016/j.ccr.2009.02.015
  74. Lima RT, Busacca S, Almeida GM, et al (2011). MicroRNA regulation of core apoptosis pathways in cancer. Eur J Cancer, 47, 163-74. https://doi.org/10.1016/j.ejca.2010.11.005
  75. Lin L, Deangelis S, Foust E, et al (2010). A novel small molecule inhibits STAT3 phosphorylation and DNA binding activity and exhibits potent growth suppressive activity in human cancer cells. Mol Cancer, 9, 217. https://doi.org/10.1186/1476-4598-9-217
  76. Lin L, Fuchs J, Li C, et al (2011). STAT3 signaling pathway is necessary for cell survival and tumorsphere forming capacity in ALDH(+)/CD133(+) stem cell-like human colon cancer cells. Biochem Biophys Res Commun, 416, 246-51. https://doi.org/10.1016/j.bbrc.2011.10.112
  77. Lu T, Stark GR (2004). Cytokine overexpression and constitutive NFkappaB in cancer. Cell Cycle, 3, 1114-7.
  78. Mantovani A, Allavena P, Sica A, et al (2008). Cancer-related inflammation. Nature, 454, 436-44. https://doi.org/10.1038/nature07205
  79. Maynard CL, Weaver CT (2009). Intestinal effector T cells in health and disease. Immunity, 31, 389-400. https://doi.org/10.1016/j.immuni.2009.08.012
  80. McGeachy MJ, Cua DJ (2008). Th17 cell differentiation: the long and winding road. Immunity, 28, 445-53. https://doi.org/10.1016/j.immuni.2008.03.001
  81. McKay CJ, Glen P, McMillan DC (2008). Chronic inflammation and pancreatic cancer. Best Pract Res Clin Gastroenterol, 22, 65-73. https://doi.org/10.1016/j.bpg.2007.11.007
  82. Mitsuyama K, Toyonaga A, Sasaki E, et al (1995). Soluble interleukin-6 receptors in inflammatory bowel disease: relation to circulating interleukin-6. Gut, 36, 45-9. https://doi.org/10.1136/gut.36.1.45
  83. Monteleone G, Monteleone I, Fina D, et al (2005). Interleukin-21 enhances T-helper cell type I signaling and interferongamma production in Crohn's disease. Gastroenterology, 128, 687-94. https://doi.org/10.1053/j.gastro.2004.12.042
  84. Mudter J, Neurath MF (2007). IL-6 signaling in inflammatory bowel disease: pathophysiological role and clinical relevance. Inflamm Bowel Dis, 13, 1016-23. https://doi.org/10.1002/ibd.20148
  85. Neuman MG (2007). Immune dysfunction in inflammatory bowel disease. Transl Res, 149, 173-86. https://doi.org/10.1016/j.trsl.2006.11.009
  86. Oberg AL, French AJ, Sarver AL, et al (2011). miRNA expression in colon polyps provides evidence for a multihit model of colon cancer. PLoS ONE, 6, 620465.
  87. Ogura H, Murakami M, Okuyama Y, et al (2008). Interleukin-17 promotes autoimmunity by triggering a positive-feedback loop via interleukin-6 induction. Immunity, 29, 628-36. https://doi.org/10.1016/j.immuni.2008.07.018
  88. Okayasu I, Ohkusa T, Kajiura K, et al (1996). Promotion of colorectal neoplasia in experimental murine ulcerative colitis. Gut, 39, 87-92. https://doi.org/10.1136/gut.39.1.87
  89. Pandurangan AK (2013). Potential Targets for Prevention of Colorectal Cancer: a Focus on PI3K/Akt/mTOR and Wnt Pathways. Asian Pac J Cancer Prev, 14, 2201-5. https://doi.org/10.7314/APJCP.2013.14.4.2201
  90. Pandurangan AK, Ananda Sadagopan SK, Dharmalingam P et al (2013). Luteolin, a bioflavonoid inhibits Azoxymethaneinduced colorectal cancer through Nrf2 signaling. Toxicol Mech Methods, 24, 13-20.
  91. Pandurangan AK, Dharmalingam P, Ananda Sadagopan SK, et al (2012). Effect of luteolin on the levels of glycoproteins during azoxymethane-induced colon carcinogenesis in mice. Asian Pac J Cancer Prev, 13, 1569-73. https://doi.org/10.7314/APJCP.2012.13.4.1569
  92. Petroulakis E, Mamane Y, Le Bacquer O,et al (2006). mTOR signaling: implications for cancer and anticancer therapy. Br J Cancer, 94, 195-9. https://doi.org/10.1038/sj.bjc.6602902
  93. Pikarsky E, Porat RM, Stein I, et al (2004). NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature, 431, 461-6. https://doi.org/10.1038/nature02924
  94. Reddy BS (2004). Studies with the azoxymethane-rat preclinical model for assessing colon tumor development and chemoprevention. Environ Mol Mutagen, 44, 26-35. https://doi.org/10.1002/em.20026
  95. Reedijk M, Odorcic S, Zhang H, et al (2008). Activation of Notch signaling in human colon adenocarcinoma. Int J Oncol, 33, 1223-9.
  96. Riemenschneider MJ, Betensky RA, Pasedag SM, et al (2006). AKT activation in human glioblastomas enhances proliferation via TSC2 and S6 kinase signaling. Cancer Res, 66, 5618-23. https://doi.org/10.1158/0008-5472.CAN-06-0364
  97. Robertson GP (2005). Functional and therapeutic significance of Akt deregulation in malignant melanoma. Cancer Metastasis Rev, 24, 273-85. https://doi.org/10.1007/s10555-005-1577-9
  98. Rose-John S, Mitsuyama K, Matsumoto S, et al (2009). Interleukin-6 trans-signaling and colonic cancer associated with inflammatory bowel disease. Curr Pharm Des, 15, 2095-103. https://doi.org/10.2174/138161209788489140
  99. Rubie C, Frick VO, Pfeil S, et al (2007). Correlation of IL-8 with induction, progression and metastatic potential of colorectal cancer. World J Gastroenterol, 13, 4996-5002.
  100. Sakamoto K, Maeda S, Hikiba Y, et al (2009). Constitutive NF-kappaB activation in colorectal carcinoma plays a key role in angiogenesis, promoting tumor growth. Clin Cancer Res, 15, 2248-58. https://doi.org/10.1158/1078-0432.CCR-08-1383
  101. Sartor RB (2006). Mechanisms of disease: pathogenesis of Crohn's disease and ulcerative colitis. Nat Clin Pract Gastroenterol Hepatol, 3, 390-407. https://doi.org/10.1038/ncpgasthep0528
  102. Sarver AL, French AJ, Borralho PM, et al (2009). Human colon cancer profiles show differential microRNA expression depending on mismatch repair status and are characteristic of undifferentiated proliferative states. BMC Cancer, 9, 401. https://doi.org/10.1186/1471-2407-9-401
  103. Scheid MP, Woodgett JR (2003). Unravelling the activation mechanisms of protein kinase B/Akt. FEBS Lett, 546, 108-12. https://doi.org/10.1016/S0014-5793(03)00562-3
  104. Scheller J, Ohnesorge N, Rose-John S (2006). Interleukin-6 trans-signalling in chronic inflammation and cancer. Scand J Immunol, 63, 321-9. https://doi.org/10.1111/j.1365-3083.2006.01750.x
  105. Schottelius AJ, Dinter H (2006). Cytokines, NF-kappaB, microenvironment, intestinal inflammation and cancer. Cancer Treat Res, 130, 67-87. https://doi.org/10.1007/0-387-26283-0_3
  106. Schroeter EH, Kisslinger JA, Kopan Rn (1998). Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature, 393, 382-6. https://doi.org/10.1038/30756
  107. Seidelin JB, Nielsen OH (2005). Continuous cytokine exposure of colonic epithelial cells induces DNA damage. Eur J Gastroenterol Hepatol, 17, 363-9. https://doi.org/10.1097/00042737-200503000-00017
  108. Seo HS, Choi HS, Kim SR, et al (2012). Apigenin induces apoptosis via extrinsic pathway, inducing p53 and inhibiting STAT3 and NFkappaB signaling in HER2-overexpressing breast cancer cells. Mol Cell Biochem, 366, 319-34. https://doi.org/10.1007/s11010-012-1310-2
  109. Shafie NH, Mohd Esa N, Ithnin H, et al (2013). Prophylactic Inositol Hexaphosphate (IP6) inhibits colon cancer through involvement of Wnt/$\beta$-catenin and COX-2 pathway. BioMed Res Int, 2013, 681027.
  110. Shanmugam MK, Rajendran P, Li F, et al (2011). Ursolic acid inhibits multiple cell survival pathways leading to suppression of growth of prostate cancer xenograft in nude mice. J Mol Med, 89, 713-27. https://doi.org/10.1007/s00109-011-0746-2
  111. Sheng H, Shao J, Williams CS, et al (1998). Nuclear translocation of beta-catenin in hereditary and carcinogen-induced intestinal adenomas. Carcinogenesis, 19, 543-9. https://doi.org/10.1093/carcin/19.4.543
  112. Sohn OS, Ishizaki H, Yang CS, et al (1991). Metabolism of azoxymethane, methylazoxymethanol and N-nitrosodimethylamine by cytochrome P450IIE1. Carcinogenesis, 12, 127-31. https://doi.org/10.1093/carcin/12.1.127
  113. Solinas G, Marchesi F, Garlanda C, et al (2010). Inflammationmediated promotion of invasion and metastasis. Cancer Metastasis Rev, 29, 243-8. https://doi.org/10.1007/s10555-010-9227-2
  114. Sparks AB, Morin PJ, Vogelstein B, et al (1998). Mutational analysis of the APC/beta-catenin/Tcf pathway in colorectal cancer. Cancer Res, 58, 1130-4.
  115. Steinman L (2007). A brief history of T(H)17, the first major revision in the T(H)1/T(H)2 hypothesis of T cell-mediated tissue damage. Nat Med, 13, 139-45. https://doi.org/10.1038/nm1551
  116. Stolfi C, Rizzo A, Franze E, et al (2011). Involvement of interleukin-21 in the regulation of colitis-associated colon cancer. J Exp Med, 208, 2279-90. https://doi.org/10.1084/jem.20111106
  117. Suzui M, Ushijima T, Dashwood RH, et al (1999). Frequent mutations of the rat beta-catenin gene in colon cancers induced by methylazoxymethanol acetate plus 1-hydroxyanthraquinone. Mol Carcinog, 24, 232-7. https://doi.org/10.1002/(SICI)1098-2744(199903)24:3<232::AID-MC10>3.0.CO;2-M
  118. Suzuki A, Hanada T, Mitsuyama K, et al (2001). CIS3/SOCS3/SSI3 plays a negative regulatory role in STAT3 activation and intestinal inflammation. J Exp Med, 193, 471-81. https://doi.org/10.1084/jem.193.4.471
  119. Takahashi M, Fukuda K, Sugimura T, et al (1998). Beta-catenin is frequently mutated and demonstrates altered cellular location in azoxymethane-induced rat colon tumors. Cancer Res, 58, 42-6.
  120. Tenesa A, Dunlop MG (2009). New insights into the aetiology of colorectal cancer from genome-wide association studies. Nat Rev Genet, 10, 353-8.
  121. Tetsu O, McCormick F (1999). Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature, 398, 422-6. https://doi.org/10.1038/18884
  122. Thiem S, Pierce TP, Palmieri M, et al (2013). mTORC1 inhibition restricts inflammation-associated gastrointestinal tumorigenesis in mice. J Clin Invest, 123, 767-81.
  123. Tian Y, Ye Y, Gao W, et al (2011). Aspirin promotes apoptosis in a murine model of colorectal cancer by mechanisms involving downregulation of IL-6-STAT3 signaling pathway. Int J Colorectal Dis, 26, 13-22. https://doi.org/10.1007/s00384-010-1060-0
  124. Tyagi A, Singh RP, Ramasamy K, et al (2009). Growth inhibition and regression of lung tumors by silibinin: modulation of angiogenesis by macrophage-associated cytokines and nuclear factor-kappaB and signal transducers and activators of transcription 3. Cancer Prev Res, 2, 74-83. https://doi.org/10.1158/1940-6207.CAPR-08-0095
  125. Ullman TA, Itzkowitz SH (2011). Intestinal inflammation and cancer. Gastroenterology, 140, 1807-16. https://doi.org/10.1053/j.gastro.2011.01.057
  126. Van Kemseke C, Belaiche J, Louis E (2000). Frequently relapsing Crohn's disease is characterized by persistent elevation in interleukin-6 and soluble interleukin-2 receptor serum levels during remission. Int J Colorectal Dis, 15, 206-10. https://doi.org/10.1007/s003840000226
  127. Villanueva A, Alsinet C, Yanger K, et al (2012). Notch signaling is activated in human hepatocellular carcinoma and induces tumor formation in mice. Gastroenterology, 143, 1660-9. https://doi.org/10.1053/j.gastro.2012.09.002
  128. Wang B, Xiao Z, Chen B, et al (2008). Nogo-66 promotes the differentiation of neural progenitors into astroglial lineage cells through mTOR-STAT3 pathway. PLoS ONE, 3, 1856. https://doi.org/10.1371/journal.pone.0001856
  129. Wang Z, Jin H, Xu R, et al (2009). Triptolide downregulates Rac1 and the JAK/STAT3 pathway and inhibits colitisrelated colon cancer progression. Exp Mol Med, 41, 717-27. https://doi.org/10.3858/emm.2009.41.10.078
  130. Ward JM (1974). Morphogenesis of chemically induced neoplasms of the colon and small intestine in rats. Lab Invest, 30, 505-13.
  131. Wodarz A, Nusse R (1998). Mechanisms of Wnt signaling in development. Annu Rev Cell Dev Biol, 14, 59-88. https://doi.org/10.1146/annurev.cellbio.14.1.59
  132. Yan S, Zhou C, Zhang W, et al (2008). beta-Catenin/TCF pathway upregulates STAT3 expression in human esophageal squamous cell carcinoma. Cancer Lett, 271, 85-97. https://doi.org/10.1016/j.canlet.2008.05.035
  133. Yang Y, Yan X, Duan W, et al (2013). Pterostilbene Exerts Antitumor Activity via the Notch1 Signaling Pathway in Human Lung Adenocarcinoma Cells. PLoS ONE, 8, 62652. https://doi.org/10.1371/journal.pone.0062652
  134. Yu H, Jove R (2004). The STATs of cancer--new molecular targets come of age. Nat Rev Cancer, 4, 97-105. https://doi.org/10.1038/nrc1275
  135. Yu H, Kortylewski M, Pardoll D (2007). Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat Rev Immunol, 7, 41-51. https://doi.org/10.1038/nri1995
  136. Yu H, Pardoll D, Jove R (2009). STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer, 9, 798-809. https://doi.org/10.1038/nrc2734
  137. Zhang HY, Spechler SJ, Souza RF (2009). Esophageal adenocarcinoma arising in Barrett esophagus. Cancer Lett, 275, 170-7. https://doi.org/10.1016/j.canlet.2008.07.006
  138. Zhong Z, Wen Z, Darnell JE, Jr (1994). Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. Science, 264, 95-8. https://doi.org/10.1126/science.8140422
  139. Zhou J, Wulfkuhle J, Zhang H, et al (2007). Activation of the PTEN/mTOR/STAT3 pathway in breast cancer stem-like cells is required for viability and maintenance. Proc Natl Acad Sci U S A, 104, 16158-63. https://doi.org/10.1073/pnas.0702596104
  140. Zhu H, Zhou X, Redfield S, et al (2013). Elevated Jagged-1 and Notch-1 expression in high grade and metastatic prostate cancers. Am J Transl Res, 5, 368-78.

Cited by

  1. Luteolin, a Bioflavonoid Inhibits Colorectal Cancer through Modulation of Multiple Signaling Pathways: A Review vol.15, pp.14, 2014, https://doi.org/10.7314/APJCP.2014.15.14.5501
  2. Radiation Induces Phosphorylation of STAT3 in a Dose- and Time-dependent Manner vol.15, pp.15, 2014, https://doi.org/10.7314/APJCP.2014.15.15.6161
  3. Influence of Propofol, Isoflurane and Enflurance on Levels of Serum Interleukin-8 and Interleukin-10 in Cancer Patients vol.15, pp.16, 2014, https://doi.org/10.7314/APJCP.2014.15.16.6703
  4. Dietary cocoa protects against colitis-associated cancer by activating the Nrf2/Keap1 pathway vol.41, pp.1, 2014, https://doi.org/10.1002/biof.1195
  5. SOCS3 methylation in synergy with Reg3A overexpression promotes cell growth in pancreatic cancer vol.92, pp.12, 2014, https://doi.org/10.1007/s00109-014-1184-8
  6. IRX2-mediated upregulation of MMP-9 and VEGF in a PI3K/AKT-dependent manner vol.12, pp.3, 2015, https://doi.org/10.3892/mmr.2015.3915
  7. Cryptotanshinone suppresses the proliferation and induces the apoptosis of pancreatic cancer cells via the STAT3 signaling pathway vol.12, pp.5, 2015, https://doi.org/10.3892/mmr.2015.4379
  8. Bevacizumab Regulates Cancer Cell Migration by Activation of STAT3 vol.16, pp.15, 2015, https://doi.org/10.7314/APJCP.2015.16.15.6501
  9. MGMT-B Gene Promoter Hypermethylation in Patients with Inflammatory Bowel Disease - A Novel Finding vol.16, pp.5, 2015, https://doi.org/10.7314/APJCP.2015.16.5.1945
  10. Association Study of Single-Nucleotide Polymorphisms of STAT2/STAT3/IFN-γ Genes in Cervical Cancer in Southern Chinese Han Women vol.16, pp.8, 2015, https://doi.org/10.7314/APJCP.2015.16.8.3117
  11. Expression of signal transducer and activator of transcription 3 and its phosphorylated form is significantly upregulated in patients with papillary thyroid cancer vol.9, pp.6, 2015, https://doi.org/10.3892/etm.2015.2409
  12. Hyperoside attenuates dextran sulfate sodium-induced colitis in mice possibly via activation of the Nrf2 signalling pathway vol.14, pp.1, 2017, https://doi.org/10.1186/s12950-017-0172-5
  13. Phytochemicals and inflammatory bowel disease: a review pp.1549-7852, 2019, https://doi.org/10.1080/10408398.2019.1570913