DOI QR코드

DOI QR Code

Insights into the Diverse Roles of miR-205 in Human Cancers

  • Published : 2014.01.30

Abstract

The recent discovery of tiny microRNAs (miRNAs) has brought about awareness of a new class of regulators of diverse pathways in many physiological and pathological processes, such as tumorigenesis. They modulate gene expression by targeting plethora of mRNAs, mostly reducing the protein yield of a targeted mRNA. With accumulation of information on characteristics of miR-205, complex and in some cases converse roles of miR-205 in tumor initiation, progression and metastasis are emerging. miR-205 acts either as an oncogene via facilitating tumor initiation and proliferation, or in some cases as a tumor suppressor through inhibiting proliferation and invasion. The aim of this review is to discuss miR-205 roles in different types of cancers. Given the critical effects of deregulated miR-205 on processes involved in tumorigenesis, they hold potential as novel therapeutic targets and biomarkers.

Keywords

References

  1. Adachi R, Horiuchi S, Sakurazawa Y, et al (2011). ErbB2 downregulates microRNA-205 in breast cancer. Biochem Biophys Res Commun, 411, 804-8. https://doi.org/10.1016/j.bbrc.2011.07.033
  2. American Cancer Society (2007). Cancer facts and figures 2007, Atlanta, Ga, USA.
  3. Babak T, Zhang W, Morris Q, Blencowe BJ, Hughes TR (2004). Probing microRNAs with microarrays: tissue specificity and functional inference. RNA, 10, 1813-9. https://doi.org/10.1261/rna.7119904
  4. Benjamini Ya , Hochberg Y (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Statist Soc Ser B, 57, 289-300.
  5. Bishop JA, Benjamin H, Cholakh H, et al (2010). Accurate classification of non-small cell lung carcinoma using a novel microRNA-based approach. Clin Cancer Res, 16, 610-9. https://doi.org/10.1158/1078-0432.CCR-09-2638
  6. Blenkiron C, Goldstein LD, Thorne NP, et al (2007). MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biol, 8, 214. https://doi.org/10.1186/gb-2007-8-5-214
  7. Blot WJ, Devesa SS, Fraumeni JF Jr (1993). Continuing climb in rates of esophageal adenocarcinoma: an update. JAMA, 270, 1320.
  8. Boll K, Reiche K, Kasack K, et al (2013). MiR-130a, miR-203 and miR-205 jointly repress key oncogenic pathways and are downregulated in prostate carcinoma. Oncogene, 32, 277-85. https://doi.org/10.1038/onc.2012.55
  9. Boren T, Xiong Y, Hakam A, et al (2008). MicroRNAs and their target messenger RNAs associated with endometrial carcinogenesis. Gynecol Oncol, 110, 206-15. https://doi.org/10.1016/j.ygyno.2008.03.023
  10. Cai Y, Yu X, Hu S, Yu J (2009). A brief review on the mechanisms of miRNA regulation. Genomics Proteomics Bioinformatics, 7, 147-54. https://doi.org/10.1016/S1672-0229(08)60044-3
  11. Calin GA, Sevignani C, Dumitru CD, et al (2004). Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A, 101, 2999-3004. https://doi.org/10.1073/pnas.0307323101
  12. Campobasso O, Andrion A, Ribotta M, Ronco G (1993). The value of the 1981 WHO histological classification in interobserver reproducibility and changing pattern of lung cancer. Int J Cancer, 53, 205-8. https://doi.org/10.1002/ijc.2910530205
  13. Chaffer CL, Weinberg RA (2011). A perspective on cancer cell metastasis. Science, 331, 1559-64. https://doi.org/10.1126/science.1203543
  14. Chang CJ, Hsu CC, Chang CH, et al (2011). Let-7d functions as novel regulator of epithelial-mesenchymal transition and chemoresistant property in oral cancer. Oncol Rep, 26, 1003-10.
  15. Chekulaeva M, Filipowicz W (2009). Mechanisms of miRNAmediated post-transcriptional regulation in animal cells. Curr Opin Cell Biol, 21, 452-60. https://doi.org/10.1016/j.ceb.2009.04.009
  16. Childs G, Fazzari M, Kung G, et al (2009). Low-level expression of microRNAs let-7d and miR-205 are prognostic markers of head and neck squamous cell carcinoma. Am J Pathol, 174, 736-45. https://doi.org/10.2353/ajpath.2009.080731
  17. Chung TK, Cheung TH, Huen NY, et al (2009). Dysregulated microRNAs and their predicted targets associated with endometrioid endometrial adenocarcinoma in Hong Kong women. Int J Cancer, 124, 1358-65. https://doi.org/10.1002/ijc.24071
  18. Croce CM (2012). 37 Causes and Consequences of microRNA Dysregulation in Cancer. Eur J Cancer, 48, 8-9.
  19. Cohen MH, Gootenberg J, Keegan P, Pazdur R (2007). FDA drug approval summary: bevacizumab (Avastin) plus Carboplatin and Paclitaxel as first-line treatment of advanced/metastatic recurrent nonsquamous non-small cell lung cancer. Oncologist, 12, 713-8. https://doi.org/10.1634/theoncologist.12-6-713
  20. Cohn DE, Fabbri M, Valeri N, et al (2010). Comprehensive miRNA profiling of surgically staged endometrial cancer. Am J Obstet Gynecol, 202, 1-8. https://doi.org/10.1016/j.ajog.2009.08.028
  21. CufiS, Vazquez-Martin A, Oliveras-Ferraros C, et al (2012). Metformin lowers the threshold for stress-induced senescence: a role for the microRNA-200 family and miR-205. Cell Cycle, 11, 1235-46. https://doi.org/10.4161/cc.11.6.19665
  22. Dar AA, Majid S, de Semir D, et al (2011). miRNA-205 suppresses melanoma cell proliferation and induces senescence via regulation of E2F1 protein. J Biol Chem, 286, 16606-14. https://doi.org/10.1074/jbc.M111.227611
  23. Darnell DK, Kaur S, Stanislaw S, et al (2006). MicroRNA expression during chick embryo development. Dev. Dyn, 235, 3156-65. https://doi.org/10.1002/dvdy.20956
  24. Dip N, Reis ST, Timoszczuk LS, et al (2012). Stage, grade and behavior of bladder urothelial carcinoma defined by the microRNA expression profile. J Urol, 188, 1951-6. https://doi.org/10.1016/j.juro.2012.07.004
  25. Fabian MR, Sundermeier TR, Sonenberg N (2010). Understanding how miRNAs post-transcriptionally regulate gene expression. Prog Mol Subcell Biol, 50, 1-20. https://doi.org/10.1007/978-3-642-03103-8_1
  26. Fassina A, Cappellesso R, Guzzardo V, et al (2012). Epithelialmesenchymal transition in malignant mesothelioma. Mod Pathol, 25, 86-99. https://doi.org/10.1038/modpathol.2011.144
  27. Feber A, Xi L, Luketich JD, et al (2008). MicroRNA expression profiles of esophageal cancer. J Thorac Cardiovasc Surg, 135, 255-60. https://doi.org/10.1016/j.jtcvs.2007.08.055
  28. Feber A, Xi L, Pennathur A, et al (2011). MicroRNA prognostic signature for nodal metastases and survival in esophageal adenocarcinoma. Ann Thorac Surg, 91, 1523-30. https://doi.org/10.1016/j.athoracsur.2011.01.056
  29. Fletcher AM, Heaford AC, Trask DK (2008). Detection of metastatic head and neck squamous cell carcinoma using the relative expression of tissue-specific mir-205. Transl Oncol, 1, 202-8. https://doi.org/10.1593/tlo.08163
  30. Gandellini P, Folini M, Longoni N, et al (2009). miR-205 Exerts tumor-suppressive functions in human prostate through down-regulation of protein kinase Cepsilon. Cancer Res, 69, 2287-95. https://doi.org/10.1158/0008-5472.CAN-08-2894
  31. Gandellini P, Profumo V, Casamichele A, et al (2012). miR-205 regulates basement membrane deposition in human prostate: implications for cancer development. Cell Death Differ, 19, 1750-60. https://doi.org/10.1038/cdd.2012.56
  32. Ginos MA, Page GP, Michalowicz BS, et al (2004). Identification of a gene expression signature associated with recurrent disease in squamous cell carcinoma of the head and neck. Cancer Res, 64, 55-63. https://doi.org/10.1158/0008-5472.CAN-03-2144
  33. Gottardo F, Liu CG, Ferracin M, et al (2007). Micro-RNA profiling in kidney and bladder cancers. Urol Oncol, 25, 387-92. https://doi.org/10.1016/j.urolonc.2007.01.019
  34. Greene SB, Gunaratne PH, Hammond SM, Rosen JM (2010a). A putative role for microRNA-205 in mammary epithelial cell progenitors. J Cell Sci, 123, 606-18. https://doi.org/10.1242/jcs.056812
  35. Greene SB, Herschkowitz JI, Rosen JM (2010b). The ups and downs of miR-205: identifying the roles of miR-205 in mammary gland development and breast cancer. RNA Biol, 7, 300-4. https://doi.org/10.4161/rna.7.3.11837
  36. Gregory PA, Bert AG, Paterson EL, et al (2008). The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol, 10, 593-601. https://doi.org/10.1038/ncb1722
  37. Gu J, Wang Y, Wu X (2013). MicroRNA in the pathogenesis and prognosis of esophageal cancer. Curr Pharm Des, 19, 1292-300.
  38. Hagman Z, Haflidadottir BS, Ceder JA, et al (2013). miR-205 negatively regulates the androgen receptor and is associated with adverse outcome of prostate cancer patients. Br J Cancer, 108, 1668-76. https://doi.org/10.1038/bjc.2013.131
  39. Hamamoto J, Soejima K, Yoda S, et al (2013). Identification of microRNAs differentially expressed between lung squamous cell carcinoma and lung adenocarcinoma. Mol Med Rep, 8, 456-62.
  40. Hesketh PJ, Clapp RW, Doos WG, Spechler SJ (1989). The increasing frequency of adenocarcinoma of the esophagus. Cancer, 64, 526-30. https://doi.org/10.1002/1097-0142(19890715)64:2<526::AID-CNCR2820640228>3.0.CO;2-B
  41. Hiroki E, Akahira J, Suzuki F, et al (2010). Changes in microRNA expression levels correlate with clinicopathological features and prognoses in endometrial serous adenocarcinomas. Cancer Sci, 101, 241-9. https://doi.org/10.1111/j.1349-7006.2009.01385.x
  42. Iorio MV, Croce CM (2009). MicroRNAs in cancer: small molecules with a huge impact. J Clin Oncol, 27, 5848-56. https://doi.org/10.1200/JCO.2009.24.0317
  43. Iorio MV, Casalini P, Piovan C, et al (2009). microRNA-205 regulates HER3 in human breast cancer. Cancer Res, 69, 2195-200. https://doi.org/10.1158/0008-5472.CAN-08-2920
  44. Iorio MV, Ferracin M, Liu CG, et al (2005 ). MicroRNA gene expression deregulation in human breast cancer. Cancer Res, 65, 7065-70. https://doi.org/10.1158/0008-5472.CAN-05-1783
  45. Iorio MV, Visone R, Di Leva G, et al (2007). MicroRNA signatures in human ovarian cancer. Cancer Res, 67, 8699-707. https://doi.org/10.1158/0008-5472.CAN-07-1936
  46. Jansson MD, Lund AH (2012). MicroRNA and cancer. Mol Oncol, 6, 590-610. https://doi.org/10.1016/j.molonc.2012.09.006
  47. Jemal A, Bray F, Center MM, et al (2011). Global cancer statistics. CA Cancer J Clin, 61, 69-90 https://doi.org/10.3322/caac.20107
  48. Jemal A, Siegel R, Ward E, et al (2009). Cancer statistics, 2009. CA Cancer J Clin, 59, 225-49. https://doi.org/10.3322/caac.20006
  49. Jiang J, Lee EJ, Gusev Y, Schmittgen TD (2005). Real-time expression profiling of microRNA precursors in human cancer cell lines. Nucleic Acids Res, 33, 5394-403. https://doi.org/10.1093/nar/gki863
  50. Kalluri R, Weinberg RA (2009). The basics of epithelialmesenchymal transition. J Clin Invest, 119, 1420-8. https://doi.org/10.1172/JCI39104
  51. Karaayvaz M, Zhang C, Liang S, Shroyer KR, Ju J (2012). Prognostic significance of miR-205 in endometrial cancer. PLoS One, 7, 35158. https://doi.org/10.1371/journal.pone.0035158
  52. Kimura S, Naganuma S, Susuki D, et al (2010). Expression of microRNAs in squamous cell carcinoma of human head and neck and the esophagus: miR-205 and miR-21 are specific markers for HNSCC and ESCC. Oncol Rep, 23, 1625-33.
  53. Kong D, Suzuki A, Zou TT, et al (1997). PTEN1 is frequently mutated in primary endometrial carcinomas. Nat Genet, 17, 143-4. https://doi.org/10.1038/ng1097-143
  54. Landgraf P, Rusu M, Sheridan R, et al (2007). A mammalian microRNA expression atlas based on small RNA library sequencing. Cell, 129, 1401-14. https://doi.org/10.1016/j.cell.2007.04.040
  55. Lim LP, Glasner ME, Yekta S, Burge CB, Bartel DP (2003). Vertebrate microRNA genes. Science, 299, 1540. https://doi.org/10.1126/science.1080372
  56. Lu J, Getz G, Miska EA, et al (2005). MicroRNA expression profiles classify human cancers. Nature, 435, 834-8. https://doi.org/10.1038/nature03702
  57. Majid S, Dar AA, Saini S, et al (2010). MicroRNA-205-directed transcriptional activation of tumor suppressor genes in prostate cancer. Cancer, 116, 5637-49. https://doi.org/10.1002/cncr.25488
  58. Majid S, Saini S, Dar AA, et al (2011). MicroRNA-205 inhibits Src-mediated oncogenic pathways in renal cancer. Cancer Res, 71, 2611-21. https://doi.org/10.1158/0008-5472.CAN-10-3666
  59. Matsushima K, Isomoto H, Kohno S, Nakao K (2010). MicroRNAs and esophageal squamous cell carcinoma. Digestion, 82, 138-44. https://doi.org/10.1159/000310918
  60. Matsushima K, Isomoto H, Yamaguchi N, et al (2011). MiRNA-205 modulates cellular invasion and migration via regulating zinc finger E-box binding homeobox 2 expression in esophageal squamous cell carcinoma cells. J Transl Med, 9, 30. https://doi.org/10.1186/1479-5876-9-30
  61. Mimeault M, Batra SK (2006). Recent advances on multiple tumorigenic cascades involved in prostatic cancer progression and targeting therapies. Carcinogenesis, 27, 1-22.
  62. Muratsu-Ikeda S, Nangaku M, Ikeda Y, et al (2012). Downregulation of miR-205 modulates cell susceptibility to oxidative and endoplasmic reticulum stresses in renal tubular cells. PLoS One, 7, 41462. https://doi.org/10.1371/journal.pone.0041462
  63. Neely LA, Rieger-Christ KM, Neto BS, et al (2010). A microRNA expression ratio defining the invasive phenotype in bladder tumors. Urol Oncol, 28, 39-48. https://doi.org/10.1016/j.urolonc.2008.06.006
  64. Pfaff J, Meister G (2013). Argonaute and GW182 proteins: an effective alliance in gene silencing. Biochem Soc Trans, 41, 855-60. https://doi.org/10.1042/BST20130047
  65. Piovan C, Palmieri D, Di Leva G, et al (2012). Oncosuppressive role of p53-induced miR-205 in triple negative breast cancer. Mol Oncol, 6, 458-72. https://doi.org/10.1016/j.molonc.2012.03.003
  66. Qu C, Liang Z, Huang J, et al (2012). miR-205 determines the radioresistance of human nasopharyngeal carcinoma by directly targeting PTEN. Cell Cycle, 11, 785-96. https://doi.org/10.4161/cc.11.4.19228
  67. Radojicic J, Zaravinos A, Vrekoussis T, et al (2011). MicroRNA expression analysis in triple-negative (ER, PR and Her2/neu) breast cancer. Cell Cycle, 10, 507-17. https://doi.org/10.4161/cc.10.3.14754
  68. Ralfkiaer U HP, Bangsgaard N, Lovendorf MB, et al (2011). Diagnostic microRNA profiling in cutaneous T-cell lymphoma (CTCL). Blood, 118, 5891-900. https://doi.org/10.1182/blood-2011-06-358382
  69. Ratner ES, Tuck D, Richter C, et al (2010). MicroRNA signatures differentiate uterine cancer tumor subtypes. Gynecol Oncol, 118, 251-7. https://doi.org/10.1016/j.ygyno.2010.05.010
  70. Risinger JI, Hayes AK, Berchuck A, Barrett JC (1997). PTEN/ MMAC1 mutations in endometrial cancers. Cancer Res, 57, 4736-8.
  71. Saad R, Chen Z, Zhu S, et al (2013). Deciphering the unique microRNA signature in human esophageal adenocarcinoma. PLoS One, 8, 64463. https://doi.org/10.1371/journal.pone.0064463
  72. Said NA, Simpson KJ, Williams ED (2013). Strategies and challenges for systematically mapping biologically significant molecular pathways regulating carcinoma epithelial-mesenchymal transition. Cells Tissues Organs, 197, 424-34. https://doi.org/10.1159/000351717
  73. Savad S, Mehdipour P, Miryounesi M, et al ( 2012). Expression analysis of MiR-21, MiR-205, and MiR-342 in breast cancer in Iran. Asian Pac J Cancer Prev, 13, 873-7. https://doi.org/10.7314/APJCP.2012.13.3.873
  74. Sempere LF, Christensen M, Silahtaroglu A, et al (2007). Altered MicroRNA expression confined to specific epithelial cell subpopulations in breast cancer. Cancer Res, 67, 11612-20. https://doi.org/10.1158/0008-5472.CAN-07-5019
  75. Sevignani C, Calin GA, Siracusa LD, Croce CM (2006). Mammalian microRNAs: a small world for fine-tuning gene expression. Mamm Genome, 17, 189-202. https://doi.org/10.1007/s00335-005-0066-3
  76. Shah MA, Kurtz RC (2010). Upper gastrointestinal cancer predisposition syndromes. Hematol Oncol Clin North Am, 24, 815-35. https://doi.org/10.1016/j.hoc.2010.06.007
  77. Shingara J, Keiger K, Shelton J, et al (2005). An optimized isolation and labeling platform for accurate microRNA expression profiling. RNA, 11, 1461-70. https://doi.org/10.1261/rna.2610405
  78. Siegel R, Naishadham D, Jemal A. (2012). Cancer statistics, 2012. CA Cancer J Clin, 62, 10-29. https://doi.org/10.3322/caac.20138
  79. Snowdon J, Zhang X, Childs T, Tron VA, Feilotter H (2011). The microRNA-200 family is upregulated in endometrial carcinoma. PLoS One, 6.
  80. Solomides CC, Evans BJ, Navenot JM, et al (2012). MicroRNA profiling in lung cancer reveals new molecular markers for diagnosis. Acta Cytol, 56, 645-4. https://doi.org/10.1159/000343473
  81. Song H, Bu G (2009). MicroRNA-205 inhibits tumor cell migration through down-regulating the expression of the LDL receptor-related protein 1. Biochem Biophys Res Commun, 388, 400-5. https://doi.org/10.1016/j.bbrc.2009.08.020
  82. Stang A, Pohlabeln H, Muller KM, et al (2006). Diagnostic agreement in the histopathological evaluation of lung cancer tissue in a population-based case-control study. Lung Cancer, 52, 29-36. https://doi.org/10.1016/j.lungcan.2005.11.012
  83. Su N, Qiu H, Chen Y, et al (2013). miR-205 promotes tumor proliferation and invasion through targeting ESRRG in endometrial carcinoma. Oncol Rep, 29, 2297-302.
  84. Suzuki H, Maruyama R, Yamamoto E, Kai M(2012). DNA methylation and microRNA dysregulation in cancer. Mol Oncol, 6, 567-78. https://doi.org/10.1016/j.molonc.2012.07.007
  85. Tashiro H, Blazes MS, Wu R, et al (1997). Mutations in PTEN are frequent in endometrial carcinoma but rare in other common gynecological malignancies. Cancer Res, 57, 3935-40.
  86. Tran MN, Choi W, Wszolek MF, et al (2013). The p63 protein isoform $\Delta{Np63}\alpha$ inhibits epithelial-mesenchymal transition in human bladder cancer cells: role of MIR-205. J Biol Chem, 288, 3275-88. https://doi.org/10.1074/jbc.M112.408104
  87. Tran N, McLean T, Zhang X, et al (2007). MicroRNA expression profiles in head and neck cancer cell lines. Biochem Biophys Res Commun, 358, 12-7. https://doi.org/10.1016/j.bbrc.2007.03.201
  88. Verdoodt B, Neid M, Vogt M, et al (2013). MicroRNA-205, a novel regulator of the anti-apoptotic protein Bcl2, is downregulated in prostate cancer. Int J Oncol, 43, 307-14.
  89. Volinia S, Calin GA, Liu CG, et al (2006). A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A, 103, 2257-61. https://doi.org/10.1073/pnas.0510565103
  90. Vosa U, Vooder T, Kolde R, et al (2013). Meta-analysis of microRNA expression in lung cancer. Int J Cancer, 132, 2884-93. https://doi.org/10.1002/ijc.27981
  91. Wang D, Qiu C, Zhang H, et al (2010). Human microRNA oncogenes and tumor suppressors show significantly different biological patterns: from functions to targets. PLoS One, 5, 13067. https://doi.org/10.1371/journal.pone.0013067
  92. Wang G, Chan ES, Kwan BC, et al (2012). Expression of microRNAs in the urine of patients with bladder cancer. Clin Genitourin Cancer, 10, 106-13. https://doi.org/10.1016/j.clgc.2012.01.001
  93. Wang WX, Wilfred BR, Hu Y, Stromberg AJ, Nelson PT (2010). "Anti-Argonaute RIP-Chip shows that miRNA transfections alter global patterns of mRNA recruitment to microribonucleoprotein complexes." RNA, 16, 394-404. https://doi.org/10.1261/rna.1905910
  94. Wienholds E, Kloosterman WP, Miska E, et al (2005). MicroRNA expression in zebrafish embryonic development. Science, 309, 310-1. https://doi.org/10.1126/science.1114519
  95. Wiklund ED, Bramsen JB, Hulf T, et al (2011). Coordinated epigenetic repression of the miR-200 family and miR-205 in invasive bladder cancer. Int J Cancer, 128, 1327-34. https://doi.org/10.1002/ijc.25461
  96. Witten D, Tibshirani R, Gu SG, Fire A, Lui WO (2010). Ultrahigh throughput sequencing-based small RNA discovery and discrete statistical biomarker analysis in a collection of cervical tumours and matched controls. BMC Biol, 8.
  97. Wu H, Zhu S, Mo YY (2009). Suppression of cell growth and invasion by miR-205 in breast cancer. Cell Res, 19, 439-48. https://doi.org/10.1038/cr.2009.18
  98. Wu W, Lin Z, Zhuang Z, Liang X (2009). Expression profile of mammalian microRNAs in endometrioid adenocarcinoma. Eur J Cancer Prev, 18, 50-5.
  99. Xie H, Zhao Y, Caramuta S, Larsson C, Lui WO (2012). miR-205 expression promotes cell proliferation and migration of human cervical cancer cells. PLoS One, 7.
  100. Xing L, Todd NW, Yu L, Fang H, Jiang F (2010). Early detection of squamous cell lung cancer in sputum by a panel of microRNA markers. Mod Pathol, 23, 1157-64. https://doi.org/10.1038/modpathol.2010.111
  101. Xu Y, Brenn T, Brown ER, Doherty V, Melton DW (2012). Differential expression of microRNAs during melanoma progression: miR-200c, miR-205 and miR-211 are downregulated in melanoma and act as tumour suppressors. Br J Cancer, 106, 553-61. https://doi.org/10.1038/bjc.2011.568
  102. Yanaihara N, Caplen N, Bowman E, et al (2006). Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell, 9, 189-98. https://doi.org/10.1016/j.ccr.2006.01.025
  103. Yu J, Ryan DG, Getsios S, et al (2008). MicroRNA-184 antagonizes microRNA-205 to maintain SHIP2 levels in epithelia. Proc Natl Acad Sci U S A, 105, 19300-5. https://doi.org/10.1073/pnas.0803992105
  104. Yu L, Todd NW, Xing L, et al (2010). Early detection of lung adenocarcinoma in sputum by a panel of microRNA markers. Int J Cancer, 127, 2870-8. https://doi.org/10.1002/ijc.25289
  105. Zhang B, Pan X, Cobb GP, Anderson TA (2007). microRNAs as oncogenes and tumor suppressors. Dev Biol, 302, 1-12. https://doi.org/10.1016/j.ydbio.2006.08.028
  106. Zhu QC, Gao RY, Wu W, Qin HL (2013). Epithelialmesenchymal Transition and Its Role in the Pathogenesis of Colorectal Cancer. Asian Pac J Cancer Prev, 14, 2689-98. https://doi.org/10.7314/APJCP.2013.14.5.2689
  107. Zidar N, Bostjancic E, Gale N, et al (2011). Down-regulation of microRNAs of the miR-200 family and miR-205, and an altered expression of classic and desmosomal cadherins in spindle cell carcinoma of the head and neck-hallmark of epithelial-mesenchymal transition. Hum Pathol, 42, 482-8 https://doi.org/10.1016/j.humpath.2010.07.020

Cited by

  1. TRAIL Based Therapy: Overview of Mesenchymal Stem Cell Based Delivery and miRNA Controlled Expression of TRAIL vol.15, pp.16, 2014, https://doi.org/10.7314/APJCP.2014.15.16.6495
  2. MicroRNAs in Colorectal Cancer: from Diagnosis to Targeted Therapy vol.15, pp.17, 2014, https://doi.org/10.7314/APJCP.2014.15.17.6989
  3. MicroRNAs: Biogenesis, Roles for Carcinogenesis and as Potential Biomarkers for Cancer Diagnosis and Prognosis vol.15, pp.18, 2014, https://doi.org/10.7314/APJCP.2014.15.18.7489
  4. miR-205 in Situ Expression and Localization in Head and Neck Tumors - a Tissue Array Study vol.15, pp.21, 2014, https://doi.org/10.7314/APJCP.2014.15.21.9071
  5. Diagnostic and Prognostic Value of miR-205 in Colorectal Cancer vol.15, pp.9, 2014, https://doi.org/10.7314/APJCP.2014.15.9.4033
  6. Mechanisms of miRNA-Mediated Gene Regulation from Common Downregulation to mRNA-Specific Upregulation vol.2014, pp.2314-4378, 2014, https://doi.org/10.1155/2014/970607
  7. Prognostic and Clinical Significance of miRNA-205 in Endometrioid Endometrial Cancer vol.11, pp.10, 2016, https://doi.org/10.1371/journal.pone.0164687
  8. Mesenchymal to Epithelial Transition Induced by Reprogramming Factors Attenuates the Malignancy of Cancer Cells vol.11, pp.6, 2016, https://doi.org/10.1371/journal.pone.0156904
  9. MiR-205 functions as a tumor suppressor in adenocarcinoma and an oncogene in squamous cell carcinoma of esophagus vol.37, pp.6, 2016, https://doi.org/10.1007/s13277-015-4656-8
  10. Renal epithelial miR-205 expression correlates with disease severity in a mouse model of congenital obstructive nephropathy vol.80, pp.4, 2016, https://doi.org/10.1038/pr.2016.121
  11. MicroRNAs: Clinical Trials and Potential Applications vol.21, pp.5, 2017, https://doi.org/10.1188/17.CJON.554-559
  12. ) -Promoted Cancer Cell Migration vol.35, pp.9, 2017, https://doi.org/10.1080/07357907.2017.1378671
  13. Differential expression and androgen regulation of microRNAs and metalloprotease 13 in breast cancer cells vol.41, pp.12, 2017, https://doi.org/10.1002/cbin.10841
  14. Long-term exposure of MCF-12A normal human breast epithelial cells to ethanol induces epithelial mesenchymal transition and oncogenic features vol.48, pp.6, 2016, https://doi.org/10.3892/ijo.2016.3461
  15. The ambiguous role of microRNA-205 and its clinical potential in pancreatic ductal adenocarcinoma pp.1432-1335, 2018, https://doi.org/10.1007/s00432-018-2755-9
  16. Low let-7d and high miR-205 expression levels positively influence HNSCC patient outcome vol.26, pp.1, 2019, https://doi.org/10.1186/s12929-019-0511-3