DOI QR코드

DOI QR Code

Porous polymer membranes used for wastewater treatment

  • Melita, Larisa (Department of Chemistry and Materials Science, Technical University of Civil Engineering of Buchares) ;
  • Gumrah, Fevzi (Heavy Oil and Oils Sands Department, Alberta Innovates Technology Futures) ;
  • Amareanu, Marin (Department of Chemistry and Materials Science, Technical University of Civil Engineering of Buchares)
  • Received : 2013.11.25
  • Accepted : 2014.05.22
  • Published : 2014.04.25

Abstract

This paper focuses on the study of the most recent ultra-filtration techniques, based on porous polymer membranes, used for the treatment of wastewater from oil, mine and hydrometallurgical industries. The performance of porous membranes used in separation and recovery of oil and heavy metals from wastewater, was evaluated by the polymer composition and by the membrane characteristics, as it follows: hydrophobicity or hydrophilicity, porosity, carrier (composition and concentration), selectivity, fouling, durability, separation efficiency and operating conditions. The oil/water efficient separation was observed on ultra-filtration (UF) techniques, with porous membranes, whereas heavy metals recovery from wastewater was observed using porous membranes with carrier. It can be concluded, that in the ultra-filtration wastewater treatments, a hybrid system, with porous polymer membranes with or without carrier, can be used for these two applications: oil/water separation and heavy metals recovery.

Keywords

References

  1. Adams, F.V., Nxumalo, E.N., Krause, R.W.M., Hoek, E.M.V. and Mamba, B.B. (2012), "Preparation and characterization of polysulfone/$\beta$-cyclodextrin polyurethane composite nanofiltration membranes", J. Membri. Sci., 405-406, 291-299. https://doi.org/10.1016/j.memsci.2012.03.023
  2. Aguilar, J.C., Castellanos-Sanchez, M., de San Miguel, E.R. and de Gyves, J. (2001), "Cd(II) and Pb(II) extraction and transport modeling in SLM and PIM systems using Kelex 100 as carrier", J. Membri. Sci., 190(1), 107-118. https://doi.org/10.1016/S0376-7388(01)00433-1
  3. Allen, E. (2008), "Process water treatment in Canada's oil sands industry: II. A review of emerging technologies", J. Environ. Sci. Eng., 7(5), 499-524. https://doi.org/10.1139/S08-020
  4. Alpatova, A., Kim, E.S., Sun, X., Hwang, G., Liu, Y. and El-Din, M.G. (2013), "Fabrication of porous polymeric nanocomposite membranes with enhanced anti-fouling properties: Effect of casting composition", J. Membr. Sci., 444, 449-460. https://doi.org/10.1016/j.memsci.2013.05.034
  5. Alvarez-Salazar, G., Bautista-Flores, A.N., Rodriguez de San Miguel, E., Muhammed, M. and De Gyves, J. (2005), "Transport characterization of a PIM system used for the extraction of Pb (II) using D2EHPA as carrier", J. Membr. Sci., 250(1-2), 247-257. https://doi.org/10.1016/j.memsci.2004.09.048
  6. Ang, W.S., Tiraferri, A., Chen, K.L. and Elimelech, M. (2011), "Fouling and cleaning of RO membranes fouled by mixtures of organic foulants simulating wastewater effluent", J. Membr. Sci., 376(1-2), 196-206. https://doi.org/10.1016/j.memsci.2011.04.020
  7. Araki, T. and Tsukube, H. (1990), Liquid Membranes: Chemical Applications, Boca Raton, CRC Press, FL, USA.
  8. Arkhangelsky, E., Kuzmenko, D. and Gitis, V. (2007), "Impact of chemical cleaning on properties and functioning of polyethersulfone membranes", J. Membr. Sci., 305(1-2), 176-184. https://doi.org/10.1016/j.memsci.2007.08.007
  9. Association of Water Technologies, Green Water Technologies Presentation, https://www.google.ro/url?sa=t&rct=j&q=&esrc=s&source=web&cd=5&ved=0CFYQFjCF&url=http%3 A%2F%2Fsuperiorwatr.com%2Fdownloads%2Fdoc_download%2F11-green-water-technologies-1-20-10 &ei=rPd4UfHuFsTAtAaq9oGgBQ&usg=AFQjCNHMB06HPnO2iTfRYthf_R0rxMyr7A&sig2=YgKyeR h_dacBPyYAdIELEQ
  10. Baker, R.W. (2004 and 2012), Membrane Technology and Applications, John Wiley & Sons Ltd., New York.
  11. Belkhouche, N.E., Didi, M.A., Romero, R., Jonsson, J.A. and Villemin, D. (2006), "Study of new organophosphorus derivates carriers on the selective recovery of M (II) and M (III) metals, using supported liquid membrane extraction", J. Membr. Sci., 284(1-2), 398-405. https://doi.org/10.1016/j.memsci.2006.08.011
  12. Benavente, J., Oleinikova, M., Munoz, M. and Valiente, M. (1998), "Characterization of novel activated composite membranes by impedance spectroscopy", J. Electroanal. Chem., 451(1-2), 173-180. https://doi.org/10.1016/S0022-0728(98)00070-9
  13. Bertin, G. and Averbeck, D. (2006), "Cadmium: Cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences-a review", Biochimie, 88(11), 1549-1559. https://doi.org/10.1016/j.biochi.2006.10.001
  14. Bukhari, N., Chaudry, M.A. and Mazhar, M. (2006), "Trietanolamine-cyclohexanone supported liquid membranes study for extraction and removal of nickel ions from nickel plating wastes, J. Membr. Sci., 283(1-2), 182-189. https://doi.org/10.1016/j.memsci.2006.06.025
  15. Byhlin, H., Jonson, A.S. (2002), "Influence of adsorption and concentration polarization on membrane performance during ultrafiltration of a nonionic surfactant", Desalination, 151(1), 21-31.
  16. Canada Association of Petroleum Producers (CAPP) (2008), Environmental Challenges and Progress in Canada's Oil Sands, 16.
  17. Castrillon, S.R.V., Lu, X., Shaffer, D.L. and Elimelech, M. (2014), "Amine enrichment and poly(ethylene glycol) (PEG) surface modification of thin-film composite forward osmosis membranes for organic fouling control", J. Membr. Sci.,450, 331-339. https://doi.org/10.1016/j.memsci.2013.09.028
  18. Chervona, Y., Arita, A. and Costa, M. (2012), "Carcinogenic metals and the epigenome: understanding the effect of nickel, arsenic, and chromium: Review", Metallomics., 4(7), 619-627. DOI: 10.1039/c2mt20033c, Epub 2012 Apr 3.
  19. Chakrabarty, B., Ghoshal, A.K. and Purkait, M.K. (2008), "Ultrafiltration of stable oil-in-water emulsion by polysulphone membranes", J. Membr. Sci., 325(1), 424-437.
  20. Chen, H. and Belfort, G. (1999), "Surface modification of poly (ether sulfone) ultra-filtration membranes by low-temperature plasma-induced graft polymerization", J. Appl. Polym. Sci., 72(13), 1699-1711. https://doi.org/10.1002/(SICI)1097-4628(19990624)72:13<1699::AID-APP6>3.0.CO;2-9
  21. Chen, W., Su, Y., Zeng, L., Wang, L. and Jiang, Y. (2009), "The improved oil/ water separation performance of cellulose acetate-graft-polyacrylonitrile membranes", J. Membr. Sci., 337(1-2), 98-105. https://doi.org/10.1016/j.memsci.2009.03.029
  22. Chen, W., Su, Y., Zhang, L., Shi, Q., Peng, J. and Jiang, Z. (2010), "In situ generated silica nanoparticles as pore forming agent for enhanced permeability of cellulose acetate membranes", J. Membr. Sci., 348(1-2), 75-83. https://doi.org/10.1016/j.memsci.2009.10.042
  23. Chen, J.H., Xing, H.T., Guo, H.X., Li, G.P., Weng, W. and Hu, S.R. (2013), "Preparation, characterization and adsorbtion properties of a novel 3-aminopropyltriethoxysilane functionalized sodium alginate porous membrane absorbent for Cr (III) ions", J. Hazard. Mater., 248-249, 285-294. https://doi.org/10.1016/j.jhazmat.2013.01.042
  24. Cherif, A.Y., Arous, O., Amara, M., Omeiri, S., Kerdjoudj, H. and Trari, M. (2012), "Synthesis of modified polymer inclusion membranes for photo-electrodeposition of cadmium using polarized electrodes", J. Hazard. Mater., 227-228, 386-393. https://doi.org/10.1016/j.jhazmat.2012.05.076
  25. Cheryan, M. and Rajagopalan, N. (1998), "Membrane processing of oily streams. Waste water treatment and waste reduction", J. Membr. Sci., 151(1), 13-28. https://doi.org/10.1016/S0376-7388(98)00190-2
  26. Cho, Y.H., Kim, H.W., Nam, S.Y. and Park, H.B. (2011), "Fouling-tolerant polysulfone-poly(ethylene oxide) random copolymer ultrafiltration membranes", J. Membr. Sci., 379(1-2), 296-306. https://doi.org/10.1016/j.memsci.2011.05.075
  27. Chu, L.Y., Wang, S. and Chen, W.M. (2005), "Surface modification of ceramic-supported polyethersulfone membranes by interfacial polymerization for reduce membrane fouling", Macromol. Chem. Phys., 206(19), 1934-1940. https://doi.org/10.1002/macp.200500324
  28. CNRL presentation. Canadian Natural Wolf Lake Plant (WLP) water treatment system (2006), CONRAD - Canadian Oil Sands Network for Research and Development, Water Usage Seminar.
  29. Contreras, A.E., Kim, A. and Li, Q. (2009), "Combined fouling of nanofiltration membranes: Mechanisms and effect of organic matter", J. Membr. Sci., 327(1-2), 87-95. https://doi.org/10.1016/j.memsci.2008.11.030
  30. Cui, J.Y., Zhang, X.F., Liu, H., Liu, S.Q. and Yeung, K.I. (2008), "Preparation and application of zeolite/ceramic microfiltration membranes for treatment of oil contaminated water", J. Membrane Sci., 325(1), 420-426. https://doi.org/10.1016/j.memsci.2008.08.015
  31. Danesi, P.R., Horwitz, E.P., Vandegrift, G.F. and Chiarizia, R. (1981), "Mass transfer rate through liquid membrane: interfacial chemical reaction and diffusion as simultaneous permeability controlling factors", Sep. Sci. Technol., 16(2), 201-211. https://doi.org/10.1080/01496398108058114
  32. Darvishzadeh, T. and Priezjev, N.V. (2012), "Effects of cross flow velocity and transmembrane pressure on microfiltration of oil-in water emulsions", J. Membr. Sci., 423-424, 468-476. https://doi.org/10.1016/j.memsci.2012.08.043
  33. Duong, H.H.P. and Chung, T.S. (2014), "Application of thin film composite membranes with forward osmosis technology for the separation of emulsified oil-water", J. Membr. Sci., 452, 117-126. https://doi.org/10.1016/j.memsci.2013.10.030
  34. EPA - United States Environmental Protection Agencies (2013), http://www2.epa.gov/lead/learn-about-lead#found
  35. El-Kayar, A., Hussein, M., Zatout, A.A., Hosny, A.Y. and Amer, A.A. (1993), "Removal of oil from stable oil-water emulsion by induced air flotation technique", Sep. Sci. Technol., 3(1), 25-31. https://doi.org/10.1016/0956-9618(93)80003-A
  36. Filippou, D. (2005), "Innovative hydrometallurgical processes for the primary processing of Zn (II)", Miner. Process. Extr. Metall., 25(3), 205-252.
  37. Fu, F. and Wang, Q. (2011), "Removal of heavy metal ions from wastewaters: A review", J. Environ. Manage., 92(3), 407-418. https://doi.org/10.1016/j.jenvman.2010.11.011
  38. Gajda, R., Skrzypczak, A. and Bogacki, M.B. (2011), "Separation of cobalt (II), nickel (II), zinc (II) and cadmium (II) ions from chloride solution", Physicochem. Prob. Miner. Process., 32, 289-294.
  39. Galan, B., Castaneda, D. and Ortiz, I. (2005), "Removal and recovery of Cr (VI) from polluted ground water: a comparative study of ion-exchange technologies", Water Resources, 39(18), 4317-4324.
  40. Gao, Y., Chen, D., Weavers, L.K. and Walker, H.W. (2012), "Ultrasonic control of UF membrane fouling by natural waters: Effects of calcium, pH, and fractionated natural organic matter", J. Membr. Sci., 401-402, 232-240. https://doi.org/10.1016/j.memsci.2012.02.009
  41. Gega, J., Walkowiak, W. and Gajda, B. (2001), "Separation of Co(II) and Ni(II) ions by supported and hybrid liquid membranes", Sep. Purif. Technology, 22-23, 551-558. https://doi.org/10.1016/S1383-5866(00)00137-4
  42. Gherasim, C.V., Bourceanu, G., Olariu, R.I. and Arsene, C. (2011), "A novel polymer inclusion membrane applied on chromium (VI) separation from aqueous solution", J. Hazard. Mater. 197, 244-253. https://doi.org/10.1016/j.jhazmat.2011.09.082
  43. Guo, L., Zhang, J., Zhang, D., Liu, Y., Deng, Y. and Chem, J. (2012), "Preparation of poly(vinylidene fluoride-co-tetrafluorethylene)-based polymer inclusion membrane using bifunctional ionic liquid extractant for Cr (VI) transport", Ind. Eng. Chem. Res., 51(6), 2714-2722. https://doi.org/10.1021/ie201824s
  44. Hajdu, I., Bodnar, M., Csikos, Z., Wei, S., Daroczi, L., Kovacs, B., Gyori, Z., Tamas, J. and Borbely, J. (2012), "Combined nano-membrane technology for removal of lead ion", J. Membr. Sci., 409-410, 44-53. https://doi.org/10.1016/j.memsci.2012.03.011
  45. Han, K.N., Yu, B.Y. and Kwak, S.Y. (2012), "Hyperbranced poly(amidoamine)/polysulfone composite membranes for Cd (II) removal from water", J. Membr. Sci., 396, 83-91. https://doi.org/10.1016/j.memsci.2011.12.048
  46. Hao, J. (2010), "Water transport study in crosslinked poly(ethylene oxide) hydrogels as fouling-resistant membrane coating materials", http://hdl.handle.net/2152/ETD-UT-2010-05-754
  47. Hashino, M., Hirami, K., Katagiri, T., Kubota, N., Ohmukai, Y., Ishigami, T., Maruyama, T. and Matsuyama, H. (2011), "Effects of three natural organic matter types on cellulose acetate butyrate microfiltration membrane fouling", J. Membr. Sci., 379(1-2), 233-238. https://doi.org/10.1016/j.memsci.2011.05.068
  48. Hayes, T. and Arthur, D. (2004), "Overview of emerging produced water treatment technologies", Proceedings of the 11th Annual International Petroleum Environmental Conference, Albuquerque, NM, October.
  49. Ho, W.S.W. (1992), Membrane Handbook, van Nostrand Reinhold, New York.
  50. Ines, M., Almeida, G.S., Cattrall, R.W. and Kolev, S.D. (2012), "Recent trends in extraction and transport of metal ions using polymer inclusion membranes (PIMs)", J. Membr. Sci., 415-416, 9-23. https://doi.org/10.1016/j.memsci.2012.06.006
  51. Ju, H., McCloskey, B.D., Sagle, A.C., Wu, Y.H., Kusuma, V.A. and Freeman, B.D. (2008), "Crosslinked poly (ethylene oxide) fouling resistant coating materials for oil/water separation", J. Membr. Sci., 307(2), 260-267. https://doi.org/10.1016/j.memsci.2007.09.028
  52. Kasperski, K.L. (1992), "A review of properties and treatment of oil sands tailings. AOSTRA", J. Research, 8, 11-53.
  53. Katsou, E. and Malamis, S. (2010), "Use of ultrafiltration membranes and aluminosilicate minerals for nickel removal from industrial wastewater", J. Membrane Sci., 360(1-2), 234-249. https://doi.org/10.1016/j.memsci.2010.05.020
  54. Kebiche-Senhadji, O., Mansouri, L., Tingry, S., Seta, P. and Benamor, M. (2008), "Facilitated Cd (II) transport across CTA polymer inclusion membrane using anion (Aliquat 336) and cation (D2EHPA) metal carriers", J. Membr. Sci., 310(1-2), 438-445. https://doi.org/10.1016/j.memsci.2007.11.015
  55. Kebiche-Senhadji, D., Bey, S., Clarizia, G., Mansouri, L. and Benamor, M. (2011), "Gas permeation behavior of CTA polymer inclusion membrane (PIM) containing an acid carrier for metal recovery (DEHPA)", Sep. Purif. Technol., 80(1), 38-44. https://doi.org/10.1016/j.seppur.2011.03.032
  56. Kim, H.C. and Dempsey, B.A. (2010), "Removal of organic acids from EfOM using anion exchange resins and consequent reduction of fouling in UF and MF", J. Membr. Sci., 364(1-2), 325-330. https://doi.org/10.1016/j.memsci.2010.08.032
  57. Kogelnig, D., Regelsberger, A., Stojanovic, A., Jirsa, F., Krachler, R. and Keppler, B.K. (2011), "A polymer inclusion membrane based on the ionic liquid trihexyl (tetradecyl) phosphonium chloride and PVC used for solid-liquid extraction of Zn (II) from hydrochloric acid solution", Monaths. Chem., 142(8), 769-772. https://doi.org/10.1007/s00706-011-0530-6
  58. Kong, J. and Li, K. (1999), "Oil removal-in-water emulsions using PVDF membranes", Sep. Purif. Technol., 16(1), 83-93. https://doi.org/10.1016/S1383-5866(98)00114-2
  59. Kozlowski, C.A. and Walkowiak, W. (2005), "Applicability of liquid membranes in chromium (VI) transport with amines as ion carriers", J. Membrane Sci., 266(1-2), 143-150. https://doi.org/10.1016/j.memsci.2005.04.053
  60. Kurniawan, T.A., Chan, G.Y.S., Lo, W.H. and Babel, S. (2006), "Comparisons of low cost adsorbent for treating wastewaters laden with heavy metals", Sci.Total Environ., 366(2-3), 409-418. https://doi.org/10.1016/j.scitotenv.2005.10.001
  61. Lewinsky, A.A. (2007), Hazardous Materials and Wastewater. Treatment, Removal and Analysis, Nova Science Publishers Inc., New York.
  62. Li, H.J., Yi, M., Cao, J.J., Qin, X., Jie, M., Wang, T.H., Liu, J.H. and Yuan, Q. (2006), "Development and characterization of antifouling cellulose hollow fiber UF membranes for oil-water separation", J. Membrane Sci., 279(1-2), 328-335. https://doi.org/10.1016/j.memsci.2005.12.025
  63. Lide, D.R. (Ed.) (2000), CRC Handbook of Chemistry and Physics, (81st Ed.), CRC Press, Boca Raton, USA, pp. 5-95.
  64. Lin, Y.H., Tung, K.L., Wang, S.H., Zhou, Q. and Shung, K.K. (2013), "Distribution and deposition of organic fouling on the microfiltration membrane evaluated by high-frequency", J. Membr. Sci., 433, 100-111. https://doi.org/10.1016/j.memsci.2013.01.020
  65. Macanas, J. and Munoz, M. (2005), "Mass transfer determining parameter in facilitated transport through di-(2-ethylhexyl) dithiophosphoric acid activated composite membranes", J. Membr. Sci., 534(1), 101-108.
  66. Maine, M.A., Sune, N., Hadad, H., Sanchez, G. and Boneto, C. (2006), "Nutrient and metal removal in a constructed wetland for wastewater treatment for metallurgic industry", Ecology Eng., 26(4), 341-350. https://doi.org/10.1016/j.ecoleng.2005.12.004
  67. Matsumotto, M., Murakami, Y. and Kondo, K. (2001), "Separation of 1-butanol by pervaporation using polymer inclusion membrane containing ionic liquids", Solvent Extraction Res. Dev.-Jpn., 18, 75-83.
  68. Mbareck, C., Nguyen, Q.T., Alaoui, O.T. and Barillier, D. (2009), "Elaboration, characterization and application of polysulfone and polyacrylic acid blends as ultrafiltration membranes for removal of some heavy metals from water", J. Hazard. Mater., 171(1-3), 93-101. https://doi.org/10.1016/j.jhazmat.2009.05.123
  69. Melita, L. and Gumrah, F. (2010), "Studies on transport of vanadium (V) and nickel (II) from wastewater using activated composite membranes", Waste and Biomass Valorization, 1(4), 461-465. https://doi.org/10.1007/s12649-010-9031-9
  70. Melita, L. and Popescu, M. (2008), "Removal of Cr (VI) from industrial water effluents and surface waters using activated composite membranes", J. Membr. Sci., 312(1-2), 157-162. https://doi.org/10.1016/j.memsci.2007.12.049
  71. Mellah, A. and Benachour, D. (2006), "The solvent extraction of zinc and cadmium from phosphoric acid solution by di- 2-ethyl hexyl phosphoric acid in kerosene diluent", Chem. Eng. Proc., 45(8), 684-690. https://doi.org/10.1016/j.cep.2006.02.004
  72. Miller, D.J., Kasemset, S., Wang, L., Paul, D.R. and Freeman, B.D. (2014), "Constant flux cross flow filtration evaluation of surface-modified fouling-resistant membranes", J. Membr. Sci., 452, 171-183. https://doi.org/10.1016/j.memsci.2013.10.037
  73. Mondal, S. and Wickramasinghe, S.R. (2008), "Produced water treatment by nanofiltration and reverse osmosis membranes", J. Membr. Sci., 322(1), 162-170. https://doi.org/10.1016/j.memsci.2008.05.039
  74. Mueller, N.C., van der Bruggen, B., Keuter, V., Luis, P., Melin, T., Pronk, W., Reisevitz, R., Rickerby, D., Rios, G.M., Wennekes, W. and Novack, B. (2012), "Nanofiltration and nanostructures membranes-Should they be considered nanotechnology or not?", J. Hazard. Mater., 211-212, 275-280. https://doi.org/10.1016/j.jhazmat.2011.10.096
  75. Murthy, Z.V.P. and Chaudhari, L.B. (2008), "Application of nanofiltration for the rejection of nickel ions from aqueous solutions and estimation of membrane transport parameters", J. Hazard. Mater., 160(1), 70-77. https://doi.org/10.1016/j.jhazmat.2008.02.085
  76. Nazarenko, A.Y. and Lamb, J.D. (1997), "Selective transport of lead(II) and strontium(II) through a crow ether-based polymer inclusion membrane containing dialkylnaphthalensulfonic acid", J. Incl. Phenom. Macro., 29, 247-258. https://doi.org/10.1023/A:1007907612714
  77. Neghlani, P.K., Rafizadeh, M. and Taromi, F.A. (2011), "Preparation of aminated-polyacrylonitrile nanofiber membranes for the adsorption of metal ions: Comparison with microfibers", J. Hazard. Mater., 186(1), 182-189. https://doi.org/10.1016/j.jhazmat.2010.10.121
  78. Nickel Named 2008 Contact Allergen of the year. http://www.nickelallergyinformation.com/2008/06/nickel-named-2008-contact-alle.htm (Retrieved 2009-06-06)
  79. Nordmeier, E. (1995), "Advances in polyelectrolyte research: counter ion bindingphenomena, dynamic processes and the helix coil transition of DNA", Macromol, Chem. Phys., 196(5), 1321-1374. https://doi.org/10.1002/macp.1995.021960501
  80. Oleinikova, M., Munoz, M., Benavente, J. and Valiente, M. (2000), "Determination of structural and electrical paramaters for activated composite membranes containing di-(2-ethylhexyl)dithiophosphoric acid as carrier", Anal. Chim. Acta, 403(1-2), 91-99. https://doi.org/10.1016/S0003-2670(99)00633-9
  81. Occupational safety and healthy guideline for vanadium pentoxide dust. http://www.osha.gov/SLTC/healthguidelines/vanadiumpentoxidedust/recognition.html (Retrieved 2009-01-29)
  82. Palet, C., Munoz, M., Hidalgo, M. and Valiente, M. (1995), "Transport of vanadium (V) through a tricaprylymethylammonium solid supported liquid membrane from aqueous acetic acid/acetate solutions", J. Membr. Sci., 98, 241-248. https://doi.org/10.1016/0376-7388(94)00188-5
  83. Paugam, M.F. and Buffe, J. (1998), "Comparison of carrier-facilitated cooper (II) ion transport mechanism in a supported liquid membrane and in a plasticized cellulose triacetate membrane", J. Membr. Sci., 147(2), 207-215. https://doi.org/10.1016/S0376-7388(98)00102-1
  84. Peng, H. and Tremblay, A.Y. (2008), "Membrane regeneration and filtration modeling in treating oily wastewaters", J. Membr. Sci., 324(1-2), 59-66. https://doi.org/10.1016/j.memsci.2008.06.062
  85. Pieracci, J., Wood, D.W., Crivello, J.V. and Belfort, G. (2000), "UV-assisted graft polymerization of N-vinyl-2-pyrrolidinone onto poly (ether sulfone) ultra-filtration membranes: Comparison of dip versus immersion modification techniques", Chem. of Mater., 12, 2123-2133. https://doi.org/10.1021/cm9907864
  86. Pont, N., Salvado, V. and Fontas, C. (2008), "Selective transport and removal of Cd from chloride solutions by polymer inclusion membranes", J. Membr. Sci., 318(1-2), 340-345. https://doi.org/10.1016/j.memsci.2008.02.057
  87. Porter, M.C. (1990). Handbook of Industrial Membrane Technology, Noyes Publications, New York.
  88. Qu, F., Liang, H., Zhou, J., Nan, J., Shao, S., Zhang, J. and Li, G. (2014), "Ultrafiltration membrane fouling caused by extracellular organic matter (EOM) from Microcystis aeruginosa: Effects of membrane pore size and surface hydrophobicity", J. Membrane Sci., 449, 58-66. https://doi.org/10.1016/j.memsci.2013.07.070
  89. Rawn-Schatzinger, V., Arthur, D., Langhus, B. (2003), "Coalbed natural gas resources: water right and treatment technologies", Gas TIPS, 9, 13-18.
  90. Rawn Schatzinger, V., Arthur, D. and Langhus, B. (2004), "Coalbed natural gas resources: beneficial use alternatives", Gas TIPS, 10, 9-14.
  91. Resina, M., Macanas, J., De Gyves, J. and Munoz, M. (2006), "Zn(II), Cd(II) and Cu(II) separation through organic-inorganic Hybrid Membranes containing di-(2-ethylhexyl) phosphoric acid or di-(2-ethylhexyl) dithiophosphoric acid as carrier", J. Membr. Sci., 268(1), 57-64. https://doi.org/10.1016/j.memsci.2005.06.008
  92. Saf, A.O., Alpaydin, S., Coskun, A. and Ersoz, M. (2011), "Selective transport and removal of Cr(VI) through polymer inclusion membrane containing 5-(4-phenoxyphenyl)-6H-1,3,4-thiadiazin-2-amine as carrier", J. Memb. Sci., 377(1-2), 241-248. https://doi.org/10.1016/j.memsci.2011.04.057
  93. Salazar-Alvarez, G., Bautista-Flores, A.N., de San Miguel, E.R., Muhammed, M. and de Gyves, J. (2005), "Transport characteristic of a PIM system used for the extraction of Pb(II) using D2EHPA as carrier", J. Membr. Sci., 250(1-2), 247-257. https://doi.org/10.1016/j.memsci.2004.09.048
  94. Scindia, Y.M., Pandey, A.K. and Reddy, A.V.R. (2005), "Coupled-diffusion transport of Cr (VI) across anion-exchange membranes prepared by physical and chemical immobilization methods", J. Membr. Sci., 249(1-2), 143-152. https://doi.org/10.1016/j.memsci.2004.10.015
  95. Semblante, G.U., Tampubolon, S.D.R., You, S.J., Lin, Y.F., Chang, T.C. and Yen, F.C. (2013), "Fouling reduction in membrane reactor through magnetic particles", J. Membr. Sci., 435, 62-70. https://doi.org/10.1016/j.memsci.2013.02.003
  96. Shah, P. and Murthy, C.N. (2013), "Studies on the porosity control of MWCNT/polysulfone composite membrane and its effect on metal removal", J. Memb. Sci., 437, 90-98. https://doi.org/10.1016/j.memsci.2013.02.042
  97. SenGupta, A.K. (2002), Environmental Separation of Heavy Metals, Boca Raton, London, New York, Washington D.C.
  98. Tanaka, N., Nagase, M. and Higa, M. (2011), "Preparation of aliphatic-hydrocarbon-based anion-exchange membranes and their anti-organic-fouling properties", J. Membr. Sci., 384(1-2), 27-36. https://doi.org/10.1016/j.memsci.2011.08.064
  99. Tsuchida, E. and Nishide, H. (1977), "Polymer-metal complexes and their catalytic activity", Adv. Polym. Sci., 24, 1-87. https://doi.org/10.1007/3-540-08124-0_1
  100. Ulbricht, M. and Belfort, G. (1996), "Surface modification of ultra-filtration membranes by low temperature plasma, II. Graft polymerization onto polyacrylonitrile and polysulfone", J. Membr. Sci., 111(2), 193-215. https://doi.org/10.1016/0376-7388(95)00207-3
  101. Ulevicz, M., Walkoviak, W., Gega, J. and Pospiech, B. (2003), "Zinc (II) selective removal from other transition metal ions by solvent extraction and transport through polymer inclusion membrane with D2EHPA" ARS Separation Acta, 2, 47-55.
  102. Vernet, J.P. (1991), Heavy Metals in the Environment, Elsevier, Amsterdam, The Netherlands.
  103. Wandera, D., Himstedt, H.H., Marroquin, M., Wickramasinghe, S.R. and Husson, S.M. (2012), "Modification of ultrafiltration membranes with block copolymer nanolayers for produced water treatment: The roles of polymer chain density and polymerization time on performance", J. Membr. Sci., 403-404, 250-260. https://doi.org/10.1016/j.memsci.2012.02.061
  104. Wang, M., Wang, X. and Ye, P. (2011), "Recovery of vanadium from the precipitate obtained by purifying the wash water formed in refining crude $TiCl_{4}$", Hydrometallurgy, 110(1-4), 40-43. https://doi.org/10.1016/j.hydromet.2011.08.005
  105. Wang, J., Pan, K., He, Q. and Cao, B. (2013), "Polyacrylonitrile/polypyrrole core/shell nanofiber mat for the removal of hexavalent chromium from aqueous solution", J. Hazard. Mater., 244-245, 121-129. https://doi.org/10.1016/j.jhazmat.2012.11.020
  106. Wei, Q., Wang, F., Nie, Z.R., Song, C.L., Wang, Y.I. and Li, Q.Y. (2008a), "Highly hydrothermally stable microporous for hydrogen separation", J. Phys. Chem. B, 112(31), 9354-9359. https://doi.org/10.1021/jp711573f
  107. Wei, Q., Wang, Y.L., Nie, Z.R., Yu, C.X., Li, Q.Y., Zou, J.X. and Li, C.J. (2008b), "Facile synthesis of hydrophobic microporous silica membranes and their resistance to humid atmosphere", Micropor. Mesopor. Mat., 111(1-3), 97-103. https://doi.org/10.1016/j.micromeso.2007.07.016
  108. Wibisono, Y., Cornelisses, E.R., Kemperman, A.J.B., van der Meer, W.G.J. and Nijmeijer, K. (2014), "Two phase flow in membrane processes: A technology with a future", J. Membr. Sci., 453, 566-602. https://doi.org/10.1016/j.memsci.2013.10.072
  109. Wu, C.J., Li, A.M., Li, L., Zhang, L., Wang, H., Qi, X.H. and Zhang, Q.X. (2008), "Treatment of oily water by a poly (vinyl alcohol) ultra-filtration membrane", Desalination, 225(1-3), 312-321. https://doi.org/10.1016/j.desal.2007.07.012
  110. Xiao, F., Xiao, P., Zhang, W.J. and Wang, D.S. (2013), "Identification of key factors affecting the organic fouling on low-pressure ultrafiltration membranes", J. Membr. Sci., 447, 144-152. https://doi.org/10.1016/j.memsci.2013.07.040
  111. Yilmaz, A., Arslan, G., Tor, A. and Akin, I. (2011), "Selectively facilitated transport of Zn (II) through a novel polymer inclusion membrane containing Cyanex 272 as a carrier reagent", Desalination, 277(1-3), 301-307. https://doi.org/10.1016/j.desal.2011.04.045
  112. Zhang, L.J.L., Cattrall, R.W. and Kolev, S.D. (2011a), "The use of a polymer inclusion membrane in flow injection analysis for the on-line separation and determination of zinc", Talanta, 84(5), 1278-1283. https://doi.org/10.1016/j.talanta.2011.01.033
  113. Zhang, Y., Jin, Z., Shan, X., Sunarso, J. and Cui, P. (2011b), "Preparation and characterization of phosphorylated Zr-doped hybrid silica/PSF composite membrane", J. Hazard. Mater., 186(1), 390-395. https://doi.org/10.1016/j.jhazmat.2010.11.016
  114. Zhang, Y., Shan, X., Jin, Z. and Wang, Y. (2011c), "Synthesis of sulfated Y-doped zirconia particles and effect on properties of polysulfone membranes for treatment of wastewater containing oil", J. Hazard. Mater., 192(2), 559-567. https://doi.org/10.1016/j.jhazmat.2011.05.058
  115. Zhu, W.P., Sun, S.P., Gao, J., Fu, F.J. and Chung, T.S. (2014), "Dual-layer polybenzimidazole/ polyethersulfone (PBI/PES) nanofiltration (NF) hollow fiber membranes for heavy metals removal from wastewater", J. Membr. Sci., 456, 117-127. https://doi.org/10.1016/j.memsci.2014.01.001

Cited by

  1. Adsorptive separation of adipic acid from aqueous solutions by perlite or its composites by manganese or copper vol.5, pp.4, 2014, https://doi.org/10.12989/mwt.2014.5.4.295
  2. Tailoring microstructure and physical properties of poly(vinylidene fluoride–hexafluoropropylene) porous films vol.50, pp.14, 2015, https://doi.org/10.1007/s10853-015-9054-5
  3. From superhydrophobic- to superhydrophilic-patterned poly(vinylidene fluoride-co-chlorotrifluoroethylene) architectures as a novel platform for biotechnological applications vol.54, pp.18, 2016, https://doi.org/10.1002/polb.24099
  4. Nonsolvent induced phase separation preparation of poly(vinylidene fluoride- co -chlorotrifluoroethylene) membranes with tailored morphology, piezoelectric phase content and mechanical properties vol.88, 2015, https://doi.org/10.1016/j.matdes.2015.09.018
  5. A thermothickening polymer as a novel flocculant for oily wastewater treatment pp.1520-5754, 2020, https://doi.org/10.1080/01496395.2018.1563161
  6. Synthesis and characterization of magnetic Fe3O4@CaSiO3 composites and evaluation of their adsorption characteristics for heavy metal ions pp.1614-7499, 2019, https://doi.org/10.1007/s11356-019-04352-6
  7. Evaluation of the Physicochemical Properties and Active Response of Piezoelectric Poly(vinylidene fluoride-co-trifluoroethylene) as a Function of Its Microstructure vol.122, pp.21, 2014, https://doi.org/10.1021/acs.jpcc.8b02605