DOI QR코드

DOI QR Code

The Nuclear Orphan Receptor NR4A1 is Involved in the Apoptotic Pathway Induced by LPS and Simvastatin in RAW 264.7 Macrophages

  • Kim, Yong Chan (Department of Biochemistry, College of Natural Sciences, Chungnam National University) ;
  • Song, Seok Bean (Department of Biochemistry, College of Natural Sciences, Chungnam National University) ;
  • Lee, Sang Kyu (Department of Biochemistry, College of Natural Sciences, Chungnam National University) ;
  • Park, Sang Min (Department of Biochemistry, College of Natural Sciences, Chungnam National University) ;
  • Kim, Young Sang (Department of Biochemistry, College of Natural Sciences, Chungnam National University)
  • Received : 2014.01.05
  • Accepted : 2014.03.28
  • Published : 2014.04.30

Abstract

Macrophage death plays a role in several physiological and inflammatory pathologies such as sepsis and arthritis. In our previous work, we showed that simvastatin triggers cell death in LPS-activated RAW 264.7 mouse macrophage cells through both caspase-dependent and independent apoptotic pathways. Here, we show that the nuclear orphan receptor NR4A1 is involved in a caspase-independent apoptotic process induced by LPS and simvastatin. Simvastatin-induced NR4A1 expression in RAW 264.7 macrophages and ectopic expression of a dominant-negative mutant form of NR4A1 effectively suppressed both DNA fragmentation and the disruption of mitochondrial membrane potential (MMP) during LPS- and simvastatin-induced apoptosis. Furthermore, apoptosis was accompanied by Bcl-2-associated X protein (Bax) translocation to the mitochondria. Our findings suggest that NR4A1 expression and mitochondrial translocation of Bax are related to simvastatin-induced apoptosis in LPS-activated RAW 264.7 macrophages.

Keywords

References

  1. Goldstein, J. L. and M. S. Brown. 1990. Regulation of the mevalonate pathway. Nature 343: 425-430. https://doi.org/10.1038/343425a0
  2. Cordle, A., J. Koenigsknecht-Talboo, B. Wilkinson, A. Limpert, and G. Landreth. 2005. Mechanisms of statin-mediated inhibition of small G-protein function. J. Biol. Chem. 280: 34202-34209. https://doi.org/10.1074/jbc.M505268200
  3. Massy, Z. A., W. F. Keane, and B. L. Kasiske. 1996. Inhibition of the mevalonate pathway: benefits beyond cholesterol reduction? Lancet 347: 102-103. https://doi.org/10.1016/S0140-6736(96)90217-2
  4. Sacks, F. M., L. A. Moye, B. R. Davis, T. G. Cole, J. L. Rouleau, D. T. Nash, M. A. Pfeffer, and E. Braunwald. 1998. Relationship between plasma LDL concentrations during treatment with pravastatin and recurrent coronary events in the Cholesterol and Recurrent Events trial. Circulation 97: 1446- 1452. https://doi.org/10.1161/01.CIR.97.15.1446
  5. Ridker, P. M., N. Rifai, M. A. Pfeffer, F. Sacks, and E. Braunwald. 1999. Long-term effects of pravastatin on plasma concentration of C-reactive protein. The Cholesterol and Recurrent Events (CARE) Investigators. Circulation 100: 230- https://doi.org/10.1161/01.CIR.100.3.230
  6. Kwak, B., F. Mulhaupt, S. Myit, and F. Mach. 2000. Statins as a newly recognized type of immunomodulator. Nat. Med. 6: 1399-1402. https://doi.org/10.1038/82219
  7. Weitz-Schmidt, G., K. Welzenbach, V. Brinkmann, T. Kamata, J. Kallen, C. Bruns, S. Cottens, Y. Takada, and U. Hommel. 2001. Statins selectively inhibit leukocyte function antigen-1 by binding to a novel regulatory integrin site. Nat. Med. 7: 687-692. https://doi.org/10.1038/89058
  8. Ghittoni, R., L. Patrussi, K. Pirozzi, M. Pellegrini, P. E. Lazzerini, P. L. Capecchi, F. L. Pasini, and C. T. Baldari. 2005. Simvastatin inhibits T-cell activation by selectively impairing the function of Ras superfamily GTPases. FASEB. J. 19: 605-607.
  9. Yilmaz, A., C. Reiss, O. Tantawi, A. Weng, C. Stumpf, D. Raaz, J. Ludwig, T. Berger, A. Steinkasserer, W. G. Daniel, and C. D. Garlichs. 2004. HMG-CoA reductase inhibitors suppress maturation of human dendritic cells: new implications for atherosclerosis. Atherosclerosis 172: 85-93. https://doi.org/10.1016/j.atherosclerosis.2003.10.002
  10. Kim, Y. C., S. B. Song, M. H. Lee, K. I. Kang, H. Lee, S. G. Paik, K. E. Kim, and Y. S. Kim. 2006. Simvastatin induces caspase-independent apoptosis in LPS-activated RAW264.7 macrophage cells. Biochem. Biophys. Res. Commun. 339: 1007-1014. https://doi.org/10.1016/j.bbrc.2005.11.099
  11. Liang, S. L., H. Liu, and A. Zhou. 2006. Lovastatin-induced apoptosis in macrophages through the Rac1/Cdc42/JNK pathway. J. Immunol. 177: 651-656. https://doi.org/10.4049/jimmunol.177.1.651
  12. Mangelsdorf, D. J. and R. M. Evans. 1995. The RXR heterodimers and orphan receptors. Cell 83: 841-850. https://doi.org/10.1016/0092-8674(95)90200-7
  13. Martinez-Gonzalez, J. and L. Badimon. 2005. The NR4A subfamily of nuclear receptors: new early genes regulated by growth factors in vascular cells. Cardiovasc. Res. 65: 609-618. https://doi.org/10.1016/j.cardiores.2004.10.002
  14. Pei, L., A. Castrillo, M. Chen, A. Hoffmann, and P. Tontonoz. 2005. Induction of NR4A orphan nuclear receptor expression in macrophages in response to inflammatory stimuli. J. Biol. Chem. 280: 29256-29262. https://doi.org/10.1074/jbc.M502606200
  15. He, Y. W. 2002. Orphan nuclear receptors in T lymphocyte development. J. Leukoc. Biol. 72: 440-446.
  16. Lee, S. L., R. L. Wesselschmidt, G. P. Linette, O. Kanagawa, J. H. Russell, and J. Milbrandt. 1995. Unimpaired thymic and peripheral T cell death in mice lacking the nuclear receptor NGFI-B (Nur77). Science 269: 532-535. https://doi.org/10.1126/science.7624775
  17. Li, H., S. K. Kolluri, J. Gu, M. I. Dawson, X. Cao, P. D. Hobbs, B. Lin, G. Chen, J. Lu, F. Lin, Z. Xie, J. A. Fontana, J. C. Reed, and X. Zhang. 2000. Cytochrome c release and apoptosis induced by mitochondrial targeting of nuclear orphan receptor TR3. Science 289: 1159-1164. https://doi.org/10.1126/science.289.5482.1159
  18. Winoto, A. and D. R. Littman. 2002. Nuclear hormone receptors in T lymphocytes. Cell 109 Suppl: S57-66. https://doi.org/10.1016/S0092-8674(02)00710-9
  19. Woronicz, J. D., B. Calnan, V. Ngo, and A. Winoto. 1994. Requirement for the orphan steroid receptor Nur77 in apoptosis of T-cell hybridomas. Nature 367: 277-281. https://doi.org/10.1038/367277a0
  20. Bonta, P. I., C. M. van Tiel, M. Vos, T. W. Pols, J. V. van Thienen, V. Ferreira, E. K. Arkenbout, J. Seppen, C. A. Spek, T. van der Poll, H. Pannekoek, and C. J. de Vries. 2006. Nuclear receptors Nur77, Nurr1, and NOR-1 expressed in atherosclerotic lesion macrophages reduce lipid loading and inflammatory responses. Arterioscler. Thromb. Vasc. Biol. 26: 2288-2294. https://doi.org/10.1161/01.ATV.0000238346.84458.5d
  21. Kim, S. O., K. Ono, P. S. Tobias, and J. Han. 2003. Orphan nuclear receptor Nur77 is involved in caspase-independent macrophage cell death. J. Exp. Med. 197: 1441-1452. https://doi.org/10.1084/jem.20021842
  22. Lee, S. K. and Y. S. Kim. 2013. Phosphorylation of eIF2alpha attenuates statin-induced apoptosis by inhibiting the stabilization and translocation of p53 to the mitochondria. Int. J. Oncol. 42: 810-816. https://doi.org/10.3892/ijo.2013.1792
  23. Lee, S. K., Y. C. Kim, S. B. Song, and Y. S. Kim. 2010. Stabilization and translocation of p53 to mitochondria is linked to Bax translocation to mitochondria in simvastatin-induced apoptosis. Biochem. Biophys. Res. Commun. 391: 1592-1597. https://doi.org/10.1016/j.bbrc.2009.12.077
  24. Yeo, M. G., Y. G. Yoo, H. S. Choi, Y. K. Pak, and M. O. Lee. 2005. Negative cross-talk between Nur77 and small heterodimer partner and its role in apoptotic cell death of hepatoma cells. Mol. Endocrinol. 19: 950-963. https://doi.org/10.1210/me.2004-0209
  25. Jin, B. R., S. J. Kim, J. M. Lee, S. H. Kang, H. J. Han, Y. S. Jang, G. Y. Seo, and P. H. Kim. 2013. Alum Directly Modulates Murine B Lymphocytes to Produce IgG1 Isotype. Immune Netw.13: 10-15. https://doi.org/10.4110/in.2013.13.1.10
  26. Lim, H., S. A. Do, S. M. Park, and Y. S. Kim. 2013. Tumor Cell Clone Expressing the Membrane-bound Form of IL-12p35 Subunit Stimulates Antitumor Immune Responses Dominated by CD8(+) T Cells. Immune. Netw. 13: 63-69. https://doi.org/10.4110/in.2013.13.2.63
  27. Lim, H. Y., H. Y. Ju, H. Y. Chung, and Y. S. Kim. 2010. Antitumor effects of a tumor cell vaccine expressing a membrane- bound form of the IL-12 p35 subunit. Cancer Biol. Ther. 10: 336-343. https://doi.org/10.4161/cbt.10.4.12310
  28. Barish, G. D., M. Downes, W. A. Alaynick, R. T. Yu, C. B. Ocampo, A. L. Bookout, D. J. Mangelsdorf, and R. M. Evans. 2005. A Nuclear Receptor Atlas: macrophage activation. Mol. Endocrinol. 19: 2466-2477. https://doi.org/10.1210/me.2004-0529
  29. Dijkmans, R., J. Van Damme, F. Cornette, H. Heremans, and A. Billiau. 1990. Bacterial lipopolysaccharide potentiates gamma interferon-induced cytotoxicity for normal mouse and rat fibroblasts. Infect. Immun. 58: 32-36.
  30. Yang, H., N. Bushue, P. Bu, and Y. J. Wan. 2010. Induction and intracellular localization of Nur77 dictate fenretinide-induced apoptosis of human liver cancer cells. Biochem. Pharmacol. 79: 948-954. https://doi.org/10.1016/j.bcp.2009.11.004
  31. Lin, B., S. K. Kolluri, F. Lin, W. Liu, Y. H. Han, X. Cao, M. I. Dawson, J. C. Reed, and X. K. Zhang. 2004. Conversion of Bcl-2 from protector to killer by interaction with nuclear orphan receptor Nur77/TR3. Cell 116: 527-540. https://doi.org/10.1016/S0092-8674(04)00162-X
  32. Masuyama, N., K. Oishi, Y. Mori, T. Ueno, Y. Takahama, and Y. Gotoh. 2001. Akt inhibits the orphan nuclear receptor Nur77 and T-cell apoptosis. J. Biol. Chem. 276: 32799-32805. https://doi.org/10.1074/jbc.M105431200
  33. Rajpal, A., Y. A. Cho, B. Yelent, P. H. Koza-Taylor, D. Li, E. Chen, M. Whang, C. Kang, T. G. Turi, and A. Winoto. 2003. Transcriptional activation of known and novel apoptotic pathways by Nur77 orphan steroid receptor. EMBO. J. 22: 6526-6536. https://doi.org/10.1093/emboj/cdg620

Cited by

  1. Effect of Allium cepa L. on Lipopolysaccharide-Stimulated Osteoclast Precursor Cell Viability, Count, and Morphology Using 4′,6-Diamidino-2-phenylindole-Staining vol.2014, pp.None, 2014, https://doi.org/10.1155/2014/535789
  2. Simvastatin inhibits apoptosis of endothelial cells induced by sepsis through upregulating the expression of Bcl-2 and downregulating Bax vol.5, pp.4, 2014, https://doi.org/10.5847/wjem.j.issn.1920-8642.2014.04.009
  3. Anti-Proliferative and Pro-Apoptotic Activities of 4-Methyl-2,6-bis(1-phenylethyl)phenol in Cancer Cells vol.24, pp.4, 2014, https://doi.org/10.4062/biomolther.2015.166
  4. Function of Nr4a Orphan Nuclear Receptors in Proliferation, Apoptosis and Fuel Utilization Across Tissues vol.8, pp.11, 2014, https://doi.org/10.3390/cells8111373
  5. Drug Delivery Systems Based on Titania Nanotubes and Active Agents for Enhanced Osseointegration of Bone Implants vol.27, pp.6, 2014, https://doi.org/10.2174/0929867326666190726123229