DOI QR코드

DOI QR Code

Numerical analysis for heat transfer and pressure drop characteristics of

다양한 배플 인자에 따른 셀-튜브 열교환기의 열전달 및 압력강하 특성에 관한 수치해석

  • Received : 2014.02.25
  • Accepted : 2014.04.17
  • Published : 2014.05.31

Abstract

In numbers of kinds of heat exchanger, the shell-tube heat exchanger is the most commonly used type of heat exchanger in the industry field. In order to improve the thermal performance of the heat exchanger, this study was analyzed heat transfer characteristics according to arrangement of baffle and direction of baffle and bump phase of baffle about shell-tube heat exchanger using appropriate SST (Shear Stress Transport) turbulence model for flow separation and boundary layer analysis. As the boundary condition for CFD (Computational Fluid Dynamics) analysis, the inlet temperature of shell side was constantly 344 K and the variation of the water flow rate was 6, 12, 18 and 24 l/min. As the result of analysis, zigzag baffle arrangement enhances heat transfer rate and pressure drop. Furthermore, in the direction of the baffle, heat transfer rate is more improved with vertical type and angle $45^{\circ}$ type than existing type, and pressure drop was little difference. Also, the bump shape of baffle surface contributes to heat transfer rate and pressure drop improvement due to the increased heat transfer area. Through analysis results, we knew that the increase of the heat transfer was influenced by flow separation, fluid residual time, contact area with the tube, flow rate, swirl and so on.

셀-튜브 열교환기는 산업분야에서 가장 널리 사용되는 열교환기이다. 열교환기의 열적 성능을 개선하기 위하여 셀-튜브 열교환기에 대해 배플의 배치, 배플의 방향, 배플의 표면의 돌기형상 등의 인자를 변경하였으며, 유동의 박리 및 경계층해석에 적절히 이용되는 SST 난류모델을 적용하여 열전달특성을 고찰하였다. CFD해석시 경계조건는 셀측의 입구온도를 344K로 일정하게 하고, 물의 유량을 6, 12, 18, 24 l/min로 변화시켰다. 그 결과로는 지그재그형 배치가 열전달률 및 압력강하가 향상되는 것으로 나타났으며, 배플의 방향은 기존형보다 수직형 및 각도 $45^{\circ}$형이 열전달이 향상되는 것으로 나타났고, 압력강하는 거의 차이가 없었다. 또한 배플의 돌기형상은 열전달면적을 증가시킴으로써 열전달률 및 압력강하가 향상됨을 알 수 있었다. 해석결과를 통하여 열전달 증가가 유동의 박리, 유체의 체류시간, 튜브와의 접촉면적, 유량, 와류 등에 따라 크게 영향을 받는다는 것을 알 수 있었다.

Keywords

References

  1. M. Kovarik, "Optimal heat transfer", Journal of Heat Transfer III, American Society of Mechanical Engineers, pp. 287-293. 1989.
  2. H. Li and V. Kottke, "Effect of baffle spacing on pressure drop and local heat transfer in shell-and-tube heat exchangers for staggered tube arrangement," International Journal of Heat and Mass Transfer, vol. 41, no. 10, pp. 1303-1311. 1998. https://doi.org/10.1016/S0017-9310(97)00201-9
  3. S. C. Lee, Y. W. Jo, and S. C. Nam, "Effect of baffle parameters on heat transfer in shell and tube heat exchangers," Transactions of the Korean Society of Mechanical Engineers B. vol. 21, no. 1, pp. 185-194, 1997 (in Korean).
  4. G. N. Oh, Y. D. Jun, and K. B. Lee, "Research of heat transfer characteristics with baffle parameters in shell and tube heat exchanger," Korean Society of Mechanical Engineers, vol. 22, no. 9, pp. 599-604, 2010 (in Korean).
  5. J. A. Hong, J. D. Jun, and K. B. Lee, "A simulation do single-tube heat exchanger with annular baffles," Proceeding of the Society of Air-conditioning and Refrigerating Engineers of Korea, pp. 1029-1034. 2012 (in Korean).
  6. Y. H. Shin, H. D. Jeong, J. H. Lee, and H. S. Chung, "A numerical study of heat transfer and flow characteristics in shell and tube heat exchanger," Proceeding of the Society of Air-conditioning and Refrigerating Engineers of Korea, pp. 1070-1073. 2011 (in Korean).
  7. S. H. Lee, M. S. Lee, and N. K. Hur, "Numerical analysis on heat transfer and flow in the shell and tube heat exchanger" Journal of Computational Fluids Engineering, vol. 12, no. 3, pp. 9-13. 2007 (in Korean).
  8. T. W. Lim and D. H. Cho, "Study on heat transfer characteristic of shell and tube heat exchanger with plate fin," The Korea Academia-Industrial cooperation Society, vol. 10, no. 1, pp. 46-51, 2009 (in Korean). https://doi.org/10.5762/KAIS.2009.10.1.046
  9. O. D. Bae, S. H. Jun, and S. H. Yun, "A study on heat transfer characteristics and pressure drop of heat transfer by baffle cut rate" Proceedings of the Korea Society of Marine Engineers, pp. 172-177, 2005 (in Korean).
  10. ANSYS Fluent Theory Guid, ANSYS Fluent v. 14, 2013.
  11. J. Y. Park and J. H. Baek, "A comparative study of PISO, SIMPLE, SIPMLE-C algorithms in 3-dimensional generalized coordinate systems," Transactions of Korean Society for Computational Fluids Engineering, vol. 1, pp. 26-34. 1996 (in Korean).
  12. H. G. Myung, CFD introduction, 1st Edition, Munundang, pp. 323-328. 2002 (in Korean).

Cited by

  1. Performance evaluation of sea water heat exchanger installed in the submerged bottom-structure of floating architecture vol.39, pp.10, 2015, https://doi.org/10.5916/jkosme.2015.39.10.1062
  2. Thermal Efficiency Characteristics According to Structure Change of Wood Pellet Boiler Using Computational Fluid Dynamics vol.12, pp.3, 2016, https://doi.org/10.7849/ksnre.2016.9.12.3.59