DOI QR코드

DOI QR Code

Canola Oil Influence on Azoxymethane-induced Colon Carcinogenesis, Hypertriglyceridemia and Hyperglycemia in Kunming Mice

  • He, Xiao-Qiong (Institute of Nutrition and Food Science, School of Public Health, Kunming Medical College) ;
  • Cichello, Simon Angelo (Institute of Nutrition and Food Science, School of Public Health, Kunming Medical College) ;
  • Duan, Jia-Li (Institute of Nutrition and Food Science, School of Public Health, Kunming Medical College) ;
  • Zhou, Jin (Institute of Nutrition and Food Science, School of Public Health, Kunming Medical College)
  • Published : 2014.03.30

Abstract

Azoxymethane (AOM) is a potent genotoxic carcinogen which specifically induces colon cancer. Hyperlipidemia and diabetes have several influences on colon cancer development, with genetic and environmental exposure aspects. Here, we investigated plasma lipid and glucose concentrations in Kunming mice randomized into four groups; control (no AOM or oil exposure), AOM control, AOM + pork oil, and AOM + canola oil. Aberrant crypt foci (ACF), plasma cholesterol, plasma triglyceride, plasma glucose and organ weight were examined 32 weeks after AOM injection. Results revealed that AOM exposure significantly increased ACF number, plasma triglyceride and glucose level. Further, male mice displayed a much higher plasma triglyceride level than female mice in the AOM control group. Dietary fat significantly inhibited AOM-induced hypertriglyceridemia, and canola oil had stronger inhibitory effect than pork oil. AOM-induced hyperglycemia had no sex-difference and was not significantly modified by dietary fat. However, AOM itself not change plasma cholesterol level. AOM significantly increased liver and spleen weight in male mice, but decreased kidney weight in female mice. On the other hand, mice testis weight decreased when fed canola oil. AOM could induce colorectal carcinogenesis, hypertriglyceridemia and hyperglycemia in Kunming mice at the same time, with subsequent studies required to investigate their genome association.

Keywords

References

  1. Anika B, Pearsall RS, Hanlon K, et al (2005). Azoxymethane is a genetic background-dependent colorectal tumor initiator and promoter in mice: effects of dose, route, and diet. Toxicol Sci, 88, 340-5. https://doi.org/10.1093/toxsci/kfi313
  2. Arakaki J, Suzui M, Morioka T, et al (2006). Antioxidative and modifying effects of a tropical plant Azadirachta indica (Neem) on azoxymethane-induced preneoplastic lesions in the rat colon. Asian Pac J Cancer Prev, 7, 467-71.
  3. Asano N, Kuno T, Hirose Y (2007). Preventive effects of a flavonoid myricitrin on the formation of azoxymethaneinduced premalignant lesions in colons of rats. Asian Pac J Cancer Prev, 8, 73-6.
  4. Bajerska J, Wozniewicz M, Jeszka J, et al (2011). Green tea aqueous extract reduces visceral fat and decreases protein availability in rats fed with a high-fat diet. Nutr Res, 31, 157-64. https://doi.org/10.1016/j.nutres.2011.01.005
  5. Bardou M, Barkun AN, Martel M, (2013). Obesity and colorectal cancer. Gut, 62, 933-47. https://doi.org/10.1136/gutjnl-2013-304701
  6. Berdanier CD (2007). Linking mitochondrial function to diabetes mellitus: an animal's tale. Am J Physiol Cell Physiol, 293, 830-6. https://doi.org/10.1152/ajpcell.00227.2006
  7. Bird RP (1995). Role of aberrant crypt foci in understanding the pathogenesis of colon cancer. Cancer Letters, 93, 55-71. https://doi.org/10.1016/0304-3835(95)03788-X
  8. Budda S, Butryee C, Tuntipopipat S, et al (2011). Suppressive effects of Moringa oleifera Lam pod against mouse colon carcinogenesis induced by azoxymethane and dextran sodium sulfate. Asian Pac J Cancer Prev, 12, 3221-8.
  9. Chang F, Jaber LA, Berlie HD, et al (2007). Evolution of peroxisome proliferator activated receptor agonists. Ann Pharmacother, 41, 973-83. https://doi.org/10.1345/aph.1K013
  10. Cichello S, Liu P, Jois M (2013). The anti-obesity effects of EGCG in relation to oxidative stress and air-pollution in China. Nat Prod and Bioprospecting, 3, 256-66. https://doi.org/10.1007/s13659-013-0060-5
  11. Cichello SA, Begg D P, Jois M, Weisinger RS (2013). Prevention of diet-induced obesity in C57BL/BJ mice with addition of 2 % dietary green tea but not with cocoa or coffee to a high-fat diet. Mediterr J Nutr Metab, 6, 233-8. https://doi.org/10.1007/s12349-013-0137-z
  12. Day SD, Enos RT, McClellan JL, et al (2013). Linking inflammation to tumorigenesis in a mouse model of highfat- diet-enhanced colon cancer. Cytokine, 64, 454-62. https://doi.org/10.1016/j.cyto.2013.04.031
  13. Diggs DL, Myners JN, Bank LD, et al (2013). Influence of dietary fat type on benzo(a)pyrene [B(a)p] biotransformation in a B(a)p-induced mouse model of colon cancer. J Nutr Biochem, 24, 2051-63. https://doi.org/10.1016/j.jnutbio.2013.07.006
  14. Dougherty U, Cerasi D, Taylor I, et al (2009). Epidermal growth factor receptor is required for colonic tumor promotion by dietary fat in the azoxymethane/dextran sulfate sodium model: roles of transforming growth factor alpha and PTGS2. Clin Cancer Res, 15, 6780-9. https://doi.org/10.1158/1078-0432.CCR-09-1678
  15. Ealey KN, Archer MC (2009). Elevated circulating adiponectin and elevated insulin sensitivity in adiponectin transgenic mice are not associated with reduced susceptibility to colon carcinogenesis. Int J Cancer, 124, 2226-30. https://doi.org/10.1002/ijc.24187
  16. Ealey KN, Lu S, Lau D, Archer MC (2008). Reduced susceptibility of muscle-specific insulin receptor knockout mice to colon carcinogenesis. Am J Physiol Gastrointest Liver Physiol, 294, 679-86. https://doi.org/10.1152/ajpgi.00526.2007
  17. Ezhumalai M, Radhiga T, Pugalendi KV (2014). Antihyperglycemic effects of carvacrol in combination with rosiglitazone in high-fat-diet-induced type 2 diabetic C57BL/6J mice. Mol Cell Biochem, 385, 23-31. https://doi.org/10.1007/s11010-013-1810-8
  18. Grady WM, Carethers JM (2008). Genomic and epigenetic instability in colorectal cancer pathogenesis. Gastroenterol, 135, 1079-99. https://doi.org/10.1053/j.gastro.2008.07.076
  19. Guizani N, Waly MI, Singh V, Rahman MS (2013). Nabag (Zizyphus spina-christi) extract prevents aberrant crypt foci development in colons of azoxymethane-treated rats by abrogating oxidative stress and inducing apoptosis. Asian Pac J Cancer Prev, 14, 5031-5. https://doi.org/10.7314/APJCP.2013.14.9.5031
  20. Gurocak S, Karabulut E, Karadag N, et al (2013). Preventive effects of resveratrol against azoxymethane induced damage in rat liver. Asian Pac J Cancer Prev, 14, 2367-70. https://doi.org/10.7314/APJCP.2013.14.4.2367
  21. Hafez E, Takahashi T, Ogawa H, et al (2011). High susceptibility to zymbal gland and intestinal carcinogenesis in diabetic Otsuka long-evans Tokushima Fatty rats. J Toxicol Pathol, 24, 187-93. https://doi.org/10.1293/tox.24.187
  22. Hata K, Kubota M, Shimizu M, et al (2012). Monosodium glutamate-induced diabetic mice are susceptible to azoxymethane- induced colon tumorigenesis. Carcinogenesis, 33, 702-7. https://doi.org/10.1093/carcin/bgr323
  23. Hosono K, Endo H, Takahashi H, et al (2010). Metformin suppresses azoxymethane-induced colorectal aberrant crypt foci by activating AMP-activated protein kinase. Mol Carcinog, 49, 662-71. https://doi.org/10.1002/mc.20637
  24. Hu Y, Martin J, Le Leu R, Young GP (2002). The colonic response to genotoxic carcinogens in the rat: regulation by dietary fiber. Carcinogenesis, 23, 1131-7. https://doi.org/10.1093/carcin/23.7.1131
  25. Imchen T, Manasse J, Min KW, Baek SJ (2013). Characterization of PPAR dual ligand MCC-555 in AOM-induced colorectal tumorigenesis. Exp Toxicol Pathol, 65, 919-24. https://doi.org/10.1016/j.etp.2013.01.005
  26. Innis SM, Dyer RA (1999). Dietary canola oil alters hematological indices and blood lipids in neonatal piglets fed formula. J Nutr, 129, 1261-8.
  27. Jacobsen H, Poulsen M, Dragsted LO, et al (2006). Carbohydrate digestibility predicts colon carcinogenesis in azoxymethanetreated rats. Nutr Cancer, 55, 163-70. https://doi.org/10.1207/s15327914nc5502_7
  28. Jang HJ, Ridgeway SD, Kim JA (2013). Effects of the green tea polyphenol epigallocatechin-3-gallate on high-fat-induced insulin resistance and endothelial dysfunction. Am J Physiol Endocrinol Metab, 305, 1444-51. https://doi.org/10.1152/ajpendo.00434.2013
  29. Kapoor S (2009). Emerging clinical and therapeutic applications of Nigella sativa in gastroenterology. World J Gastroenterol, 15, 2170-1. https://doi.org/10.3748/wjg.15.2170
  30. Kim JH, Lim YJ, Kim YH, et al (2007). Is metabolic syndrome a risk factor for colorectal adenoma? Cancer Epidemiol Biomarkers Prev, 16, 1543-6. https://doi.org/10.1158/1055-9965.EPI-07-0199
  31. Madrigal-Bujaidar E, Roaro LM, Garcia-Aguirre K, et al (2013). Grapefruit juice suppresses azoxymethane-induced colon aberrant crypt formation and induces antioxidant capacity in mice. Asian Pac J Cancer Prev, 14, 6851-6. https://doi.org/10.7314/APJCP.2013.14.11.6851
  32. Manolio TA, Brooks LD, Collins FS (2008). A HapMap harvest of insights into the gentics of common disease. J Clin Invest, 118, 1590-605. https://doi.org/10.1172/JCI34772
  33. Matsunaga K, Katayama M, Sakata K, et al (2002). Inhibitory Effects of Chlorogenic Acid on Azoxymethane-induced Colon Carcinogenesis in Male F344 Rats. Asian Pac J Cancer Prev, 3, 163-6.
  34. McCarthy MI, Abecasis GR, Caedon LR, et al (2008). Genomewide association studies for complex traits: consensus, uncertainty and challenges. Nat Rev Genet, 9, 356-69. https://doi.org/10.1038/nrg2344
  35. Neyrinck AM, Van Hee VF, Bindels LB, et al (2013). Polyphenol-rich extract of pomegranate peel alleviates tissue inflammation and hypercholesterolemia in high-fat diet-induced obese mice: potential omplication of the gut microbiota. Br J Nutr, 109, 802-9. https://doi.org/10.1017/S0007114512002206
  36. Ohmori H, Luo Y, Fujii K, et al (2010). Dietary linoleic acid and glucose enhances azoxymethane-induced colon cancer and metastases via the expression of high-mobility group box 1. Pathobiology, 77, 210-7. https://doi.org/10.1159/000296305
  37. Park EY, Lim MK, Yang W, et al (2013). Policy Effects of Secondhand Smoke Exposure in Public Places in the Republic of Korea: Evidence from PM2.5 levels and Air Nicotine Concentrations. Asian Pac J Cancer Prev, 14, 7725-30. https://doi.org/10.7314/APJCP.2013.14.12.7725
  38. Pennacchio LA, Rubin EM (2003). Apolipoprotein A5, a newly identified gene that affects plasma triglyceride levels in humans and mice. Arterioscler Thromb Vasc Biol, 23, 529-34. https://doi.org/10.1161/01.ATV.0000054194.78240.45
  39. Raju J (2008). Azoxymethane-induced rat aberrant crypt foci: relevance in studying chemoprevention of colon cancer. World J Gastroenterol, 14, 6632-5. https://doi.org/10.3748/wjg.14.6632
  40. Raju J, Bird RP (2003). Energy restriction reduces the number of advanced aberrant crypt foci and attenuates the expression of colonic transforming growth factor beta and cyclooxygenase isoforms in Zucker obese (fa/fa) rats. Cancer Res, 63, 6595-601.
  41. Ren X, Zhang X, Zhang X, et al (2009). Type 2 diabetes mellitus associated with increased risk for colorectal cancer: Evidence from an international ecological study and population-based risk analysis in China. Public Health, 123, 540-4. https://doi.org/10.1016/j.puhe.2009.06.019
  42. Sakano K, Takahashi M, Kitano M, et al (2006). Suppression of azoxymethane-induced colonic premalignant lesion formation by coenzyme Q10 in rats. Asian Pac J Cancer Prev, 7, 599-603.
  43. Sengupta A, Ghosh S, Bhattacharjee S (2005). Dietary cardamom inhibits the formation of azoxymethane-induced aberrant crypt foci in mice and reduces COX-2 and iNOS expression in the colon. Asian Pac J Cancer Prev, 6, 118-22.
  44. Sengupta A, Ghosh S, Das S (2002). Inhibition of Cell Proliferation and Induction of Apoptosis During Azoxymethane Induced Colon Carcinogenesis by Black Tea. Asian Pac J Cancer Prev, 3, 41-6.
  45. Seok, H, Cha BS (2013). Refocusing peroxisome proliferator activated receptor-$\alpha$: A new insight for therapeutic roles in diabetes. Diabetes Metab J, 37, 326-32 https://doi.org/10.4093/dmj.2013.37.5.326
  46. Shen J, Wanibuchi H, Salim EI, et al (2004). Inhibition of azoxymethane-induced colon carcinogenesis in rats due to JTE-522, a selective cyclooxygenase-2 inhibitor. Asian Pac J Cancer Prev, 5, 253-8.
  47. Shimizu M, Shirakami Y, Iwasa J, et al (2009). Supplementation with branched-chain amino acids inhibits azoxymethaneinduced colonic preneoplastic lesions in male C57BL/KsJ-db mice. Clin Cancer Res, 15, 3068-75. https://doi.org/10.1158/1078-0432.CCR-08-2093
  48. Suzuki R, Kohno H, Sugie S, et al (2006). Strain differences in the susceptibility to azoxymethane and dextran sodium sulfate-induced colon carcinogenesis in mice. Carcinogenesis, 27, 162-9.
  49. Tabuchi M, Kitayama J, Nagawa H (2006). Hypertriglyceridemia is positively correlated with the development of colorectal tubular adenoma in Japanese men. World J Gastroenterol, 12, 1261-4.
  50. Takahashi N, Yao L, Kim M, et al (2013). Dill seed extract improves abnormalities in lipid metabolism through peroxisome proliferator activated receptor-$\alpha$activation in diabetic obese mice. Mol Nutr Food Res, 57, 1295-9. https://doi.org/10.1002/mnfr.201200767
  51. Tuominen I, Al-Rabadi L, Stavrakis D, et al (2013). Dietinduced obesity promotes colon tumor development in azoxymethane-treated mice. PLoS One, 8, 60939. https://doi.org/10.1371/journal.pone.0060939
  52. Vaxillaire MDP, Bonnefond A, Froguel P (2009). Breakthroughs in monogenic diabetes genetics from pediatric forms to young adulthood diabetes. Pediatr Endocrinol Rev, 6, 405-17.
  53. Vinikoor LC, Long MD, Keku TO, et al (2009). The association between diabetes, insulin use, and colorectal cancer among White and African Americans. Cancer Epidemiol Biomarkers Prev, 18, 1239-42. https://doi.org/10.1158/1055-9965.EPI-08-1031
  54. Waly MI, Ali A, Guizani N, et al (2012). Pomegranate (Punica granatum) peel extract efficacy as a dietary antioxidant against azoxymethane-induced colon cancer in rat. Asian Pac J Cancer Prev, 13, 4051-5. https://doi.org/10.7314/APJCP.2012.13.8.4051
  55. Xiao H, Hao X, Simi B, et al (2008). Green tea polyphenols inhibit colorectal aberrant foci (ACF) formation and prevent oncogenic changes in dysplastic ACF in azoxymethanetreated F344 rats. Carcinogenesis, 29, 113-9.
  56. Xiao W, Nowak M, Laferte S, Fontanie T (1996). Mutagenicity and toxicity of the DNA alkylation carcinogens 1, 2-dimethylhydrazine and azoxymethane in Escherichia coli and Salmonella typhimurium. Mutagenesis, 11, 241-5. https://doi.org/10.1093/mutage/11.3.241
  57. Yasuda Y, Shimizu M, Shirakami Y, et al (2010). Pitavastatin inhibits azoxymethane-induced colonic preneoplastic lesions in C57BL/KsJ-db/db obese mice. Cancer Sci, 101, 1701-7. https://doi.org/10.1111/j.1349-7006.2010.01579.x

Cited by

  1. Luteolin, a Bioflavonoid Inhibits Colorectal Cancer through Modulation of Multiple Signaling Pathways: A Review vol.15, pp.14, 2014, https://doi.org/10.7314/APJCP.2014.15.14.5501
  2. Proliferative and Inhibitory Activity of Siberian ginseng (Eleutherococcus senticosus) Extract on Cancer Cell Lines; A-549, XWLC-05, HCT-116, CNE and Beas-2b vol.16, pp.11, 2015, https://doi.org/10.7314/APJCP.2015.16.11.4781
  3. Effects of Two Traditional Chinese Cooking Oils, Canola and Pork, on pH and Cholic Acid Content of Faeces and Colon Tumorigenesis in Kunming Mice vol.16, pp.15, 2015, https://doi.org/10.7314/APJCP.2015.16.15.6225
  4. Preventive effects of Resveratrol against azoxymethane-induced testis injury in rats vol.49, pp.6, 2016, https://doi.org/10.1111/and.12674