DOI QR코드

DOI QR Code

Matrix Metalloproteinases and Cancer - Roles in Threat and Therapy

  • Yadav, Lalita (Department of Oral and Maxillofacial Pathology, Kalka Dental College) ;
  • Puri, Naveen (Department of Oral and Maxillofacial Pathology, Kalka Dental College) ;
  • Rastogi, Varun (Department of Oral and Maxillofacial Pathology, Kalka Dental College) ;
  • Satpute, Pranali (Department of Oral and Maxillofacial Pathology, Goverment Dental College) ;
  • Ahmad, Riyaz (GMC) ;
  • Kaur, Geetpriya (Department of Oral and Maxillofacial Pathology, Kalka Dental College)
  • Published : 2014.02.01

Abstract

Matrix metalloproteinases (MMPs) are a family of zinc dependent extracellular matrix (ECM) remodelling endopeptidases having the ability to degrade almost all components of extracellular matrix and implicated in various physiological as well as pathological processes. Carcinogenesis is a multistage process in which alteration of the microenvironment is required for conversion of normal tissue to a tumour. Extracellular matrix remodelling proteinases such as MMPs are principal mediators of alterations observed in the microenvironment during carcinogenesis and according to recent concepts not only have roles in invasion or late stages of cancer but also in regulating initial steps of carcinogenesis in a favourable or unfavourable manner. Establishment of relationships between MMP overproduction and cancer progression has stimulated the development of inhibitors that block proteolytic activity of these enzymes. In this review we discuss the MMP general structure, classification, regulation roles in relation to hallmarks of cancer and as targets for therapeutic intervention.

Keywords

References

  1. Agrez M, Chen A, Cone R I, Pytela R, Sheppard D (1994). The ${\alpha}5{\beta}6$ integrin promotes proliferation of colon carcinoma cells through a unique region of the b6 cytoplasmic domain. J Cell Biol, 127, 547-56. https://doi.org/10.1083/jcb.127.2.547
  2. Basbaum C B, Werb Z (1996). Focalized proteolysis: spatial and temporal regulation of extracellular matrix at the cell surface. Current Opinions in Cell Biology, 8, 731-38. https://doi.org/10.1016/S0955-0674(96)80116-5
  3. Benbow U, Brinckerhoff C E (1997). The AP-1 site and MMP gene regulation: what is all the fuss about? Matrix Biol, 15, 519-26. https://doi.org/10.1016/S0945-053X(97)90026-3
  4. Birchmeier C, Birchmeier W, Brand- saberi B (1996). Epithelialmesenchymal transition in cancer progression. ActaAnat, 156, 217-26.
  5. Brew K, Dinakarpandian D, Nagase H (2000).Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochem Biophys Acta, 1477, 267-83.
  6. Cao Z G, Li C Z (2006). A single nucleotide polymorphism in the matrix metalloproteinase-1 promoter enhances oral squamous cell carcinoma susceptibility in a Chinese population. Oral Oncol, 42, 32-8. https://doi.org/10.1016/j.ooe.2005.08.006
  7. Chambers A F, Groom A C, Macdonald I C (2002). Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer, 2, 563-72. https://doi.org/10.1038/nrc865
  8. Chambers A F, Matrisian L M (1997). Changing views of the role of matrix metalloproteinases in metastasis. J Natl Cancer Inst, 89, 1260-70. https://doi.org/10.1093/jnci/89.17.1260
  9. Chaudhary A K, Singh M, Bharti A C, et al (2010). Genetic polymorphism of matrix metalloproteinases and their inhibitors in potentially malignant lesions of the head and neck. J Biomed Sci, 17, 10. https://doi.org/10.1186/1423-0127-17-10
  10. Chen L C, Noelken M E, Nagase H(1993). Disruption of the cysteine-75 and zinc ion coordination is not sufficient to activate the precursor of human matrix metalloproteinase 3(stromelysin- 1). Biochemistry, 32, 10289-295. https://doi.org/10.1021/bi00090a003
  11. Choi S,Myers J N (2008). Molecular pathogenesis of oral squamous cell carcinoma: implications for Therapy. J Dent Res, 87, 14-32. https://doi.org/10.1177/154405910808700104
  12. Cornelius L A, et al (1998). Matrix metalloproteinases generate angiostatin: effects on neovascularisation. J Immunol, 161,6845-52.
  13. Curran S,Murray G I (1999). Matrix metalloproteinases in tumour invasion and metastasis. J Pathol, 189, 300-8. https://doi.org/10.1002/(SICI)1096-9896(199911)189:3<300::AID-PATH456>3.0.CO;2-C
  14. Denhardt D T, Feng B, Edwards D R, Cocuzzi E T, Malyanker U M (1993). Tissue inhibitor of metalloproteinases(TIMP aka EPA): structure, control of expression and biological functions. PharmacolTher, 59, 329-341.
  15. Eccles S A et al (1996). Control of lymphatic and hematogenous metastasis of a rat mammary carcinoma by the matrix metalloproteinase inhibitor batimastat (BB-94). Cancer Res, 56, 2815-22.
  16. Egeblad M ,Werb Z (2002). New function for the matrix metalloproteinases in cancer progression. Nature reviews, 2, 161-74.
  17. Falardeau P, Champagne P, Poyet P, Hariton C, Dupont E (2001). Neovastat, a naturally occurring multifunctional antiangiogenic drug, in phase III clinical trials. Semin Oncol, 28, 620-5. https://doi.org/10.1016/S0093-7754(01)90035-1
  18. Ferreras M, Felbor U, Lenhard T, Olsen B R, Delaisse J (2000). Generation and degradation of human endostatin protein by various proteinases. FEBS Lett, 486, 247-51. https://doi.org/10.1016/S0014-5793(00)02249-3
  19. Folgueras A R, Pendas A M, Sanchez L M, Lopez-otin C (2004). Matrix metalloproteinases in cancer: from new function to improved inhibition strategies. Int J Dev Biol, 48, 411-24. https://doi.org/10.1387/ijdb.041811af
  20. Ganea E, Trifan M, Laslo A C, Putina G, Cristescu C (2007). Matrix metalloproteinases: useful and deleterious. Biochem Soc Trans, 35, 689-91. https://doi.org/10.1042/BST0350689
  21. Gialeli C, Kletsas D, Mavroudis D, Kalofonos H P, Tzanakakis G N (2009). Targetting epidermal growth factor receptor in solid tumours: critical evaluation of the biological importance of therapeutic monoclonal antibodies. Curr Med Chem, 16, 3797-804. https://doi.org/10.2174/092986709789177984
  22. Gialeli C, Theocharis A D, Karamanos N K (2011). Role of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J, 278, 16-27. https://doi.org/10.1111/j.1742-4658.2010.07919.x
  23. Gorelik L, Flavell R A (2001). Immune mediated eradication of tumours through the blockage of transforming growth factor-beta signalling in T-cells. Nature Med, 7, 1118-22. https://doi.org/10.1038/nm1001-1118
  24. Greene J, Wang M, Liu Y E, et al (1996). Molecular cloning and characterisation of human tissue inhibitor of metalloproteinase 4. J BiolChem, 271, 30375-380.
  25. Hanahan D, Folkman J (1996). Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell, 86, 353-64. https://doi.org/10.1016/S0092-8674(00)80108-7
  26. Hanahan D, Weinberg R A (2000). The hallmarks of cancer. Cell, 100, 57-70. https://doi.org/10.1016/S0092-8674(00)81683-9
  27. Hidalgo M, Eckhardt S G (2001). Development of matrix metalloproteinase inhibitors in cancer therapy. J Natl Cancer Inst, 93, 178-93. https://doi.org/10.1093/jnci/93.3.178
  28. Ikebe T, Shinohara M, Takeuchi H, et al (1999). Gelatinolytic activity of matrix metalloproteinase in tumour tissues correlates with invasiveness of oral cancer. Clin Exp Metastasis, 17, 315-23. https://doi.org/10.1023/A:1006642428826
  29. Illman S A, Lehti K, Keski-Oja J, Lohi J (2006). Epilysin(MMP-28) induces TGF B mediated epithelial to mesenchymal transition in lung carcinoma cells. J Cell Sci, 119, 3856-65. https://doi.org/10.1242/jcs.03157
  30. Jemal A, Tiwari RC, Murray T, et al (2004). Cancer statistics. CA Cancer J Clin, 54, 9-29.
  31. Karin M, Chang L (2001). AP-1 glucocorticoid receptor crosstalk taken to a higher level. J. Endocrinol, 169,447-51. https://doi.org/10.1677/joe.0.1690447
  32. Kim J, Yu W, Kovalski K, Ossowski L (1998). Requirment of specific proteases in cancer cell intravasation as revealed by a novel semiquantitative PCR based assay. Cell, 94, 353-62. https://doi.org/10.1016/S0092-8674(00)81478-6
  33. Koolwijk P, Sidenius N, Peters E, et al (2001). Proteolysis of the urokinase-type plasminogen activator receptor by metalloproteinase-12:implication for angiogenesis in fibrin matrices. Blood, 97, 3123-31. https://doi.org/10.1182/blood.V97.10.3123
  34. Kousidou O C, Mitropoulou T N, Roussidis A E, et al (2006). Genistein suppresses the invasive potential of human breast cancer cells through transcriptional regulation of metalloproteinases and their tissue inhibitors. Int J Oncol, 26, 1101-9.
  35. Kuga H, Morisaki T, Nakamura K, et al (2003). Interferon gama suppreses transforming growth factor beta induced invasion of gastric carcinoma cells through cross talk of Smad pathway in a three -dimensional culture model. Oncogene, 22, 7838-47. https://doi.org/10.1038/sj.onc.1207046
  36. Kumar V, Abbas A K, Fausto N (2004). Robbins and Cotran Pathologic basis of disease. 7thed; Philadelphia; Saunders; Elsevier Inc, 202-3.
  37. Leco K J, Khokha R, Pavloff N, Hawkes S P, Edwards D R (1994). Tissue inhibitors of metalloproteinases-3 (TIMP-3) is an extracellular matrix associated protein with a distinctive pattern of expression in mouse cells and tissues. J Biol Chem, 269, 9532-60.
  38. Lijnen H R (2001). Plasmin and matrix metalloproteinases in vascular remodelling. Thomb Haemost, 86, 324-33.
  39. Lockhart A C, Braun R D, Yu D, et al (2003). Reduction of wound angiogenesis in patients treated with BMS-275291, a broad spectrum matrix metalloproteinase inhibitor. Clin Cancer Res, 9, 586-93.
  40. Lokeshwar B L, Escatel E, Zhu B (2001). Cytotoxic activity and inhibition of tumour cell invasion by derivatives of a chemically modified tetracycline CMT-3(COL-3). Curr Med Chem, 8, 271-9. https://doi.org/10.2174/0929867013373516
  41. Lopez-otin C, Overall C M (2002). Protease degradomics: a new challenge for proteomics. Nat Rev Mol Cell Biol, 3, 509-19. https://doi.org/10.1038/nrm858
  42. Manes S, Mira E, Barbacid MM, Cipres A, et al (1997). Identification of insulin -like growth binding protein-1 as a potential physiological substrate for human stromelysins-3. J Biol Chem, 272, 25706-12. https://doi.org/10.1074/jbc.272.41.25706
  43. Maretzky T, Reiss K, Ludwig A, et al (2005). ADAM-10 mediates E-cadherin shedding and regulates epithelial cell-cell adhesion , migration and beta- catenin translocation. Proc Natl Acad Sci USA, 102, 9182-87. https://doi.org/10.1073/pnas.0500918102
  44. McCawley L J, Matrisian L M (2001). Matrix metalloproteinases: they are not just for matrix anymore! Curr. Opin. Cell Biol,13, 534-40. https://doi.org/10.1016/S0955-0674(00)00248-9
  45. Mitsiades N, Yu W H, Poulaki V, Tsokos M, Stamenkovic I (2001). Matrix metalloproteinase-7 mediated cleavage of Fas ligand protects tumour cells from chemotherapeutic drug toxicity. Cancer Res, 61, 577-81.
  46. Murphy G, Reynolds J J (1993). Extracellular matrix degradation: in connective tissue and its heritable disorders. Royce P M,Steinman B, editors. New York, Wiley-Liss 287-316.
  47. Murray G I, Duncan M E, O'Neil P, Melvin W T, Fothergill J E (1996). Matrix metalloproteinase-1 is associated with poor prognosis in colorectal cancer. Nat Med, 2, 461-2. https://doi.org/10.1038/nm0496-461
  48. Nagase H, Visse R, Murphy G (2006). Structure and function of matrix metalloproteinases and TIMPs. Cardiovascular Res, 69, 562-73. https://doi.org/10.1016/j.cardiores.2005.12.002
  49. Nelson A R, Fingleton B, Rotherberg M L, et al (2000). Matrix metalloproteinases: biologic activity and clinical implications. J Clin Oncol, 18, 1135-49.
  50. Noe V et al (2001). Release of an invasion promoter E-cadherin fragment by matrilysins and stromilysin-1. J Cell Sci, 114, 111-8.
  51. Overall C M (2002). Molecular determinants of metalloproteinase substrate specificity: matrix metalloproteinases and new 'intracellular substrate binding domains, modules and exosites. Mol Biotechnol Chem, 383, 1059-66.
  52. Overall C M, Lopez-otin C(2002). Strategies for MMP inhibition in cancer: innovations for the post-trial era. Nat Rev Cancer, 2, 657-72. https://doi.org/10.1038/nrc884
  53. Pendas A M, Balbin M, Llano E, Jimenez M G, Lopez-otin C (1997). Structural analysis and promoter characterization of the human collagenases-3 gene (MMP-13). Genomics, 40, 222-33. https://doi.org/10.1006/geno.1996.4554
  54. Peschon JJ, Slack JL, Reddy P, et al (1998). An essential role for ectodomain shedding in mammalian development. Science, 282, 1281-84. https://doi.org/10.1126/science.282.5392.1281
  55. Rundhaung J E. Matrix Metalloproteinases, angiogenesis and cancer (2003). Clin Cancer Res, 9, 551-54.
  56. Sapadin A N, Fleischmajer R (2006). Tetracyclines: nonantibiotic properties and their clinical implications. J Am Acad Dermatol, 54, 258-65. https://doi.org/10.1016/j.jaad.2005.10.004
  57. Sekhon BS (2010). Matrix metalloproteinases-an overview. Res Reports Biol, 1, 20.
  58. Sheu B C, Hsu S M, Ho H N, et al (2001). A novel role of metalloproteinase in cancer-mediated immunosuppression. Cancer Res, 61, 237-42.
  59. Stamenkovic I (2003). Extracellular remodelling: the role of metalloendopeptidases. J Pathol, 200, 448-64. https://doi.org/10.1002/path.1400
  60. Sternlicht M D, Werb Z (2001). How matrix metalloproteinase regulate cell behaviour. Annu Rev Cell Dev Biol, 17, 463-516. https://doi.org/10.1146/annurev.cellbio.17.1.463
  61. Stetler-Stevenson W G (1999). Matrix metalloproteinases in angiogenesis: a moving target for therapeutic intervention. J Clin Investig, 103, 1237-41. https://doi.org/10.1172/JCI6870
  62. Stetler-stevenson W G, Krutzsch H C, Liotta L A (1989). Tissue inhibitor of metalloproteinase (TIMP-2). J BiolChem, 264, 17374-8.
  63. Steward W P, Thomas A L (2000). Marimastat: the clinical development of a matrix metalloproteinase inhibitor. Expert Opin Invesig Drugs, 9, 2913-22. https://doi.org/10.1517/13543784.9.12.2913
  64. Strickland D K, Ashcom J D, Williams S, et al (1990). Sequence identity between the alpha 2- macroglobulin receptor and low density lipoprotein receptor related protein suggests that this molecule is a multifunctional receptor. J BiolChem, 265, 17401-4.
  65. Takeichi M (1991). Cadherin cell adhesion receptors as a morphogenetic regulator. Science, 251, 1451-55. https://doi.org/10.1126/science.2006419
  66. Thiery J P (2002). Epithelial mesenchymal transitions in tumour progression. Nat Rev Cancer, 2, 442-54. https://doi.org/10.1038/nrc822
  67. Thomas GT, Lewis MP, Speight PM (1999). Matrixmetalloproteinases and oral cancer. Oral Oncol, 227, 33.
  68. Uria J A, Ferrando A A, Velasco G, Freije J M P, Lopez-otin C (1994). Structure and expression in breast tumours of human TIMP-3, a new member of the metalloproteinase family. Cancer Res, 54, 2091-94.
  69. Velasco G, Pendas A M, Fueyo A ,et al (1999). Cloning and characterization of human MMP-23,a new matrix metalloproteinase predominantly expressed in reproductive tissues and lacking conserved domains in other family members. J BiolChem, 274, 4570-76.
  70. Vihinen P, Kahari V M (2002). Matrix metalloproteinases in cancer: prognostic markers and therapeutic targets. Int J cancer, 99, 157-66. https://doi.org/10.1002/ijc.10329
  71. Visse R, Nagase H (2003). Matrix metalloproteinases and tissue inhibitors of metalloproteinases: Structure, Function and Biochemistry. Circulation Research, 92,827-39. https://doi.org/10.1161/01.RES.0000070112.80711.3D
  72. Waldhauer I, Goehlsdorf D, Gieseke F, et al (2008). Tumour associated MICA is shed by ADAM proteases. Cancer Res, 68, 6368-76. https://doi.org/10.1158/0008-5472.CAN-07-6768
  73. Westermarck J, Kahari V M (1999). Regulation of matrix metalloproteinase expression in tumour invasion. FASEB J, 13, 781-92.
  74. Williamson R A, Marston F A, Angal S, et al (1990). Disulphide bond assignment in human tissue inhibitor of metalloproteinases(TIMP). Biochem J, 268, 267-74.
  75. Wojtowicz-praga S, Low J, Marshall J, et al (1996). Phase I trial of a novel matrix metalloproteinase inhibitor batimastat(BB-94) in patients with advanced cancer. Invest New Drugs, 14, 193-202.
  76. Zhang Y Zhang YY, Chen B, Ding YQ (2012). Metastasisassociated Factors Facilitating the Progression of Colorectal Cancer. APJCP, 13, 2436-47.

Cited by

  1. Molecular mechanism underlying the anticancer effect of simvastatin on MDA-MB-231 human breast cancer cells vol.12, pp.1, 2012, https://doi.org/10.3892/mmr.2015.3411
  2. Association of Matrix Metalloproteinase (MMP)-2 and -9 Expression with Extra-gastrointestinal Stromal Tumor Metastasis vol.15, pp.10, 2014, https://doi.org/10.7314/APJCP.2014.15.10.4187
  3. Roles of Oxidative Stress in the Development and Progression of Breast Cancer vol.15, pp.12, 2014, https://doi.org/10.7314/APJCP.2014.15.12.4745
  4. Lack of Association Between the Matrix Metalloproteinase-2 -1306C>T Polymorphism and Breast Cancer Susceptibility: a Meta-analysis vol.15, pp.12, 2014, https://doi.org/10.7314/APJCP.2014.15.12.4823
  5. Suppression of Human Breast Cancer Cell Metastasis by Coptisine in Vitro vol.15, pp.14, 2014, https://doi.org/10.7314/APJCP.2014.15.14.5747
  6. The MMP-2 -735 C Allele is a Risk Factor for Susceptibility to Breast Cancer vol.15, pp.15, 2014, https://doi.org/10.7314/APJCP.2014.15.15.6199
  7. Inhibitory effect of emodin on migration, invasion and metastasis of human breast cancer MDA-MB-231 cells in vitro and in vivo vol.33, pp.1, 2014, https://doi.org/10.3892/or.2014.3585
  8. Circulating glioma biomarkers pp.1523-5866, 2014, https://doi.org/10.1093/neuonc/nou207
  9. Additive effects of eukaryotic co-expression plasmid carrying GRIM-19 and LKB1 genes on breast cancer in vitro and in vivo vol.12, pp.5, 2015, https://doi.org/10.3892/mmr.2015.4393
  10. Suppression of Aurora-A-FLJ10540 signaling axis prohibits the malignant state of head and neck cancer vol.14, pp.1, 2015, https://doi.org/10.1186/s12943-015-0348-7
  11. Steroidal Saponins from Paris polyphylla Suppress Adhesion, Migration and Invasion of Human Lung Cancer A549 Cells Via Down-Regulating MMP-2 and MMP-9 vol.15, pp.24, 2015, https://doi.org/10.7314/APJCP.2014.15.24.10911
  12. Serum Levels of MMP9 and MMP2 in Patients with Oral Squamous Cell Carcinoma vol.16, pp.4, 2015, https://doi.org/10.7314/APJCP.2015.16.4.1327
  13. Effect of Pulsed Electromagnetic Field on MMP-9 and TIMP-1 Levels in Chondrosarcoma Cells Stimulated with IL-1β vol.16, pp.7, 2015, https://doi.org/10.7314/APJCP.2015.16.7.2701
  14. Association and Prognostic Significance of the Functional −1562C/T Polymorphism in the Promoter Region of MMP-9 in Turkish Patients with Gastric Cancer vol.21, pp.4, 2015, https://doi.org/10.1007/s12253-015-9950-7
  15. Cyclodextrin mediated delivery of NF-κB and SRF siRNA reduces the invasion potential of prostate cancer cells in vitro vol.22, pp.10, 2015, https://doi.org/10.1038/gt.2015.50
  16. Capn4 promotes non-small cell lung cancer progression via upregulation of matrix metalloproteinase 2 vol.32, pp.3, 2015, https://doi.org/10.1007/s12032-015-0500-7
  17. Prognostic impact of polymorphism of matrix metalloproteinase-2 and metalloproteinase tissue inhibitor-2 promoters in breast cancer in Tunisia: case-control study vol.36, pp.5, 2015, https://doi.org/10.1007/s13277-014-3023-5
  18. Synthesis and Evaluation of Trehalose-Based Compounds as Novel Inhibitors of Cancer Cell Migration and Invasion vol.86, pp.5, 2015, https://doi.org/10.1111/cbdd.12569
  19. vol.87, pp.1, 2015, https://doi.org/10.1111/cbdd.12632
  20. Potential Roles of Protease Inhibitors in Cancer Progression vol.16, pp.18, 2016, https://doi.org/10.7314/APJCP.2015.16.18.8047
  21. Aurora-A modulates MMP-2 expression via AKT/NF-κB pathway in esophageal squamous cell carcinoma cells vol.48, pp.6, 2016, https://doi.org/10.1093/abbs/gmw030
  22. (Maitake) Mushroom in Breast Cancer vol.69, pp.1, 2017, https://doi.org/10.1080/01635581.2017.1247891
  23. Molecular Mechanisms Underlying the Inhibitory Effects of Qingzaojiufei Decoction on Tumor Growth in Lewis Lung Carcinoma pp.1552-695X, 2017, https://doi.org/10.1177/1534735417694953
  24. BubR1 Acts as a Promoter in Cellular Motility of Human Oral Squamous Cancer Cells through Regulating MMP-2 and MMP-9 vol.16, pp.12, 2015, https://doi.org/10.3390/ijms160715104
  25. Tapirira guianensis Aubl. Extracts Inhibit Proliferation and Migration of Oral Cancer Cells Lines vol.17, pp.11, 2016, https://doi.org/10.3390/ijms17111839
  26. Tauroursodeoxycholic acid reduces the invasion of MDA-MB-231 cells by modulating matrix metalloproteinases 7 and 13 vol.12, pp.3, 2016, https://doi.org/10.3892/ol.2016.4842
  27. MMP-14 and TGFβ-1 methylation in pituitary adenomas vol.12, pp.4, 2016, https://doi.org/10.3892/ol.2016.4919
  28. Effects of RNA silencing of matrix metalloproteinase-2 on the growth of esophageal carcinoma cells in vivo vol.13, pp.3, 2016, https://doi.org/10.3892/ol.2016.5542
  29. Exosome-shuttling microRNA-21 promotes cell migration and invasion-targeting PDCD4 in esophageal cancer vol.48, pp.6, 2016, https://doi.org/10.3892/ijo.2016.3453
  30. Nutrients and Oxidative Stress: Friend or Foe? vol.2018, pp.1942-0994, 2018, https://doi.org/10.1155/2018/9719584
  31. Mediators of Inflammation – A Potential Source of Biomarkers in Oral Squamous Cell Carcinoma vol.2018, pp.2314-7156, 2018, https://doi.org/10.1155/2018/1061780
  32. Molecular and Immunohistochemical Markers with Prognostic and Predictive Significance in Liver Metastases from Colorectal Carcinoma vol.19, pp.10, 2018, https://doi.org/10.3390/ijms19103014
  33. Metalloproteinases in disease: identification of biomarkers of tissue damage through proteomics pp.1744-8387, 2018, https://doi.org/10.1080/14789450.2018.1538800
  34. MMP8 and MMP9 gene polymorphisms were associated with breast cancer risk in a Chinese Han population vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-31664-3
  35. Predictive and prognostic value of Matrix metalloproteinase (MMP) - 9 in neoadjuvant chemotherapy for triple-negative breast cancer patients vol.18, pp.1, 2018, https://doi.org/10.1186/s12885-018-4822-7
  36. The Impact of Human Papilloma Viruses, Matrix Metallo-Proteinases and HIV Protease Inhibitors on the Onset and Progression of Uterine Cervix Epithelial Tumors: A Review of Preclinical and Clinical Studies vol.19, pp.5, 2018, https://doi.org/10.3390/ijms19051418
  37. Glabridin inhibits osteosarcoma migration and invasion via blocking the p38- and JNK-mediated CREB-AP1 complexes formation vol.234, pp.4, 2018, https://doi.org/10.1002/jcp.27171
  38. The role of microRNAs regulating the expression of matrix metalloproteinases (MMPs) in breast cancer development, progression, and metastasis vol.234, pp.5, 2019, https://doi.org/10.1002/jcp.27445
  39. pp.1478-6427, 2019, https://doi.org/10.1080/14786419.2018.1548454
  40. Decreased MMP1 gene expression in acute myeloid leukaemia pp.1573-4978, 2019, https://doi.org/10.1007/s11033-019-04685-y
  41. Urotensin II receptor antagonist reduces hepatic resistance and portal pressure through enhanced eNOS-dependent HSC vasodilatation in CCl4-induced cirrhotic rats pp.2095-0225, 2019, https://doi.org/10.1007/s11684-019-0689-5