DOI QR코드

DOI QR Code

Development of Flight Control System for Gliding Guided Artillery Munition - Part I : Operational Concept and Navigation

유도형 활공 탄약 비행제어시스템 개발 Part I : 운용 개념 및 항법

  • Lim, Seunghan (Division of Aerospace Engineering, Korea Advanced Institute of Science and Technology) ;
  • Pak, Changho (Defense R&D Institute, Poongsan) ;
  • Cho, Changyeon (Defense R&D Institute, Poongsan) ;
  • Bang, Hyochoong (Division of Aerospace Engineering, Korea Advanced Institute of Science and Technology)
  • Received : 2013.05.16
  • Accepted : 2014.02.17
  • Published : 2014.03.01

Abstract

In this paper, the operational concept and the navigation algorithms for the gliding guided artillery munition are studied. The gliding guided artillery munition has wings for gliding; therefore spin of the munition should be eliminated. The previous navigation algorithms assumed a spinning munition with constant angular velocity; hence, they cannot be applied for the gliding munition. Moreover, lateral stability becomes worse due to decrease of angular momentum. Therefore, side force should be controlled to improve the stability, and the munition should maneuver, then the previous navigation algorithms for typical fixed-wing aircraft cannot be applied. In this paper, we apply the previous navigation algorithms for the spinning munition. Spin is eliminated and wings are deployed based on the estimation results, and the advanced navigation algorithm for the non-spinning munition is introduced.

본 논문은 유도형 활공 탄약의 운용 개념을 소개하고, 이를 위한 항법 알고리듬을 제안하였다. 유도형 활공 탄약은 기존의 유도형 탄약과는 다르게 사거리 증가를 위한 날개를 장착하고 활공하며, 이를 위해 날개 전개 전 탄체의 회전은 제거된다. 따라서 일정한 회전속도를 고려한 기존 유도형 탄약 항법 알고리듬은 활공 중에는 사용할 수 없다. 또한 탄체의 회전이 제거되면 회전 관성이 작아져 횡축이 불안정해져 횡축 가속도를 제어해야 하고, 이로 인해 롤 자세에 의한 횡축 중력 가속도 성분을 알 수 없다. 따라서 횡축 중력 가속도 성분을 기반으로 롤 자세를 추정하는 등속 수평 비행 상태를 가정한 기존 항법 알고리듬은 사용할 수 없다. 본 논문에서는 유도형 활공 탄약의 회전 중 상태 추정을 위해서는 Lucia가 제안한 알고리듬을 사용하였고, 활공 중 상태 추정을 위해서는 새로운 항법 알고리듬을 제안하였다.

Keywords

References

  1. David J. Hepner, Thomas E. Harkins, "Determining Inertial Orientation of a Spinning Body with Body-fixed Sensors," Report of U.S. Army Research Laboratory, No: ARL-TR-2313, 2001.
  2. Kreichauf, R., E. Lindquist, "Estimation of the Roll Angle in a Spinning Guided Munition Shell," IEEE Position, Location, And Navigation Symposium, 2006.
  3. Han Sung Lee, Kwangjin Kim, HeeYoung Park, Chan Gook Park, Jang Gyu Lee, "Roll Estimation of a Smart Munition Using a Magnetometer Based on an Unscented Kalman Filter," AIAA Guidance, Navigation and Control Conference and Exhibit. Honolulu, Hawaii, 18-21 August 2008.
  4. Wilson, M. J., "Attitude Determination With Magnetometers for Gun-Launched Munitions," Report of U.S. Army Research Laboratory, No: ARL-TR-3209, 2004.
  5. HeeYoung Park, Kwangjin Kim, Jang Gyu Lee, Chan Gook Park, "Roll Angle Estimation Algorithm in a Smart Munition using Angular Rate Modulation(in Korean)," KSAS Fall Conference, pp.391-394, Nov. 2006
  6. Jaeho Kim, Sungho Ahn, "A study of gliding artillery shell for extended(in Korean)," 10th Seminars for ground weapon system, Nov. 2002.
  7. Lucia, D. J., "Estimation of the Local Vertical State for a Guided Munition Shell with an Embedded GPS / Micro-Mechanical Inertial Navigation System," MIT, Master Thesis, 1995.
  8. Hall, J. K., Knoebel, N. B., and McLain, T. W., "Quaternion Attitude Estimation for Miniature Air Vehicles using a Multiplicative Extended Kalman Filter," IEEE Position, Location and Navigation Symposium, Brigham Young University, Provo, UT, 5-8 May 2008, pp.1230-1237