DOI QR코드

DOI QR Code

Optimization of shock absorption system for lunar lander considering the effect of lunar regolith

달 토양 특성을 고려한 달착륙선 충격흡수장치의 최적화

  • Yang, Soon Shin (Department of Aerospace Engineering, Inha University) ;
  • Kang, Yeon Chul (Department of Aerospace Engineering, Inha University) ;
  • Son, Jae Yeon (Department of Aerospace Engineering, Inha University) ;
  • Oh, Min Hwan (Department of Aerospace Engineering, Inha University) ;
  • Kim, Jeong Ho (Department of Aerospace Engineering, Inha University) ;
  • Cho, Jin Yeon (Department of Aerospace Engineering, Inha University)
  • Received : 2012.12.28
  • Accepted : 2014.03.26
  • Published : 2014.04.01

Abstract

To successfully explore the moon by lunar lander, it is essential to guarantee the safe landing of lunar lander. Therefore, efficient shock absorption system of lunar lander should be designed in order to reduce landing impact force. Also, for more practical design of lunar lander, it is important to consider the effect of lunar regolith. In the line of thought, finite element model of lunar lander considering the effect of lunar regolith is developed. To reduce landing impact force, optimization of shock absorption system for lunar lander has been carried out. In optimization, sequential approximate optimization method based on meta-model is used. Through the result of optimization, it is verified that landing impact force on lunar lander can be efficiently reduced by the present optimization procedure.

성공적으로 달 탐사를 수행하기 위해서는 달착륙선의 안전한 착륙이 보장되어야 한다. 그러므로 안전한 착륙을 저해하는 착륙 시 충격하중을 감소시키기 위해서는 효율적인 달착륙선 충격흡수장치를 설계해야 한다. 또한 더욱 현실적인 달착륙선 설계를 위해서는 달 토양의 특성을 고려하는 것이 중요하다. 이에 본 논문에서는 달 토양의 특성을 반영한 달착륙선 착륙 해석 모델을 구축하고, 효율적인 충격력 감소를 위해 달착륙선의 충격흡수장치에 대한 최적설계를 수행하였다. 최적설계는 메타모델 기반의 순차적 근사 최적설계기법을 이용하여 수행하였으며, 최적설계 결과로 부터 본 연구에서 사용된 최적화 방법을 통해 달착륙선에 가해지는 충격력을 효과적으로 저감시킬 수 있음을 확인하였다.

Keywords

References

  1. Huntress, W. T., Moroz, V. I., Shevalev, I. L, "Lunar and Planetary Robotic Exploration Missions in the 20th Century", Space Science Reviews, Vol. 107, 2003, pp. 541-649. https://doi.org/10.1023/A:1026172301375
  2. Kim, W.-S., Kim, S.-W., Hwang, D.-S., "Development Trend of Shock-Absorbing Landing Gear for Lunar Lander," Current Industrial and Technological Trends in Aerospace, Vol. 9, No. 1, 2011, pp. 119-129.
  3. Blanchard, U. J., "Evaluation of a Full-scale Lunar-gravity by Comparison of Landing-impact Tests of a Full-scale and a 1/6-scale Model", NASA Technical Note D-4474, 1968.
  4. Kim, H.-D., Lee, H.-H., Kim, S., Park, J.-S., "Design of the KAU Lunar Lander for Shock Absorption Structure Test," Proceeding of the 2010 KSAS Fall Conference, 2010, pp. 837-840.
  5. Kim, H.-D., Lee, H.-H., Hwang, D.-S., Park, J.-S., "Prediction to Shock Absorption Energy of an Aluminum Honeycomb", J. of The Korean Society for Aeronautical and Space Sciences, Vol. 38, No. 5, 2011, pp. 391-399. https://doi.org/10.5139/JKSAS.2011.39.5.391
  6. Oh, M. H., Cho, Y. M., Lee, H. J., Cho, J. Y., Hwang, D. S., "Sequential Approximate Optimization of Shock Absorption System for Lunar Lander by using Quadratic Polynomial Regression Meta-model", J. of The Korean Society for Aeronautical and Space Sciences, Vol. 39, No. 4, 2011, pp. 289-384. https://doi.org/10.5139/JKSAS.2011.39.4.314
  7. ESA-NEXT Team, "Next lunar lander with in-situ science and mobility: Lunar environment specification", ESA, 2008.
  8. Yang, S. S., Cho, J. Y., Kim, J. H., Lim, J. H., Kim, S. H., "Landing Behaviors of Lunar Lander considering the Effect of Lunar Regolith," Proceeding of the 2012 KSAS Fall Conference, 2012, pp. 1676-1681.
  9. Yang, S. S., Optimization for Shock Absorption System of Lunar Lander considering Characteristics of Lunar Regolith, Master Thesis, Inha University, 2013.
  10. Sun, Y., Hu, Y., Liy, P., Deng, Z. "Touchdown dynamics modeling and simulation of lunar lander", ISSCAA, 2010, pp. 1320-1324.
  11. Son, T.-J., Na, K.-S., Kim, J.-W., Lim, J. H., Kim, K.-W., "Design of a Structural Model for Korean Lunar Explorer", J. of The Korean Society for Aeronautical and Space Sciences, Vol. 41, No. 5, 2013, pp. 366-372. https://doi.org/10.5139/JKSAS.2013.41.5.366
  12. HEXCEL Composites, HexWebTM Honeycomb Attributes and Properties-A comprehensive guide to standard Hexcel honeycomb materials, configurations, and mechanical properties, 1999.
  13. Oh, M. H., Development of Sample-reusable Meta-model based Design Optimization Method and its Applications, Ph.D. Dissertation, Inha University, 2012.
  14. Lysmer, J., Kuhlemeyer, R. L., "Finite dynamic model for infinite media", J. Eng. Mech. Div., ASCE 95, 1969, pp. 859-877.
  15. Rao, A. S. R, Ranjan, G., Basic and Applied Soil Mechanics, 2nd Ed., New Age International, New Delhi, 2000, pp. 290-296.
  16. Kikendall Orr, Development of a finite element model to predict the behavior of a prototype wheel on lunar soil, Ph.D. Dissertation, Clemson University, 2010, pp. 62-63.
  17. Liu, Rongqiang, et al. "Design and selection of aluminum foam for impact damper of legged lunar Lander", Systems and Control in Aerospace and Astronautics, 2008. ISSCAA 2008. 2nd International Symposium on. IEEE, 2008. pp. 1-6.

Cited by

  1. Lunar CubeSat Impact Trajectory Characteristics as a Function of Its Release Conditions vol.2015, 2015, https://doi.org/10.1155/2015/681901