DOI QR코드

DOI QR Code

Proper Orthogonal Decomposition Analysis of Flow Characteristics in Hybrid Rocket Engine

POD에 의한 하이브리드 로켓 연소실의 유동특성 해석

  • Park, Charyeom (Department of Aerospace Engineering, Konkuk University) ;
  • Lee, Changjin (Department of Aerospace Engineering, Konkuk University)
  • Received : 2014.01.20
  • Accepted : 2014.03.31
  • Published : 2014.05.01

Abstract

POD analysis has been done to investigate the internal flow characteristics using LES calculation results of hybrid rocket combustion chamber. The special emphasis was put on the change in the mode energy distribution caused by the installation of diaphragm compared to the baseline case. Also the comparison was made to investigate the effect of wall blowing on the changes in the mode energy between the regions near and far from the diaphragm. For baseline case, POD results clearly distinguish the primary mode containing most of flow energy from the rest of flow modes (2-9 mode) depicting small scale modes. Also, the increase in the energy of flow modes 2-5 is responsible for the formation of relatively large scale structures due to diaphragm. In addition, the comparison of mode energy distributions of flow fields with diaphragm shows similar patterns in both wall blowing and no blowing case. This implies that the local increase in regression rate just after the diaphragm is directly associated with the increase in energy distributions of 2-5 modes.

하이브리드 로켓 연소실 내부 유동장에 대한 수치계산 결과에 POD기법을 적용하였다. 특히, 다이어프램 설치에 따른 유동모드 변화를 분석하여, 연소특성에 미치는 영향을 해석하였다. 또한, 다이어프램이 있는 연소실에서 표면 분출유동의 유무에 따른 POD를 적용하여 분출유동이 연소실 내부 유동특성에 미치는 영향을 판단하였다. 10개의 모드를 사용하여 기본형상에 대한 POD 결과를 살펴보면 주 유동을 나타내는 모드 1과 벽면 근처의 작은 크기 유동인 2-9 모드 사이의 구분이 분명하게 나타났다. 다이어프램을 설치한 형상의 POD 결과, 모드 2부터 5의 에너지가 증가하였는데 이것은 다이어프램 주변 순환영역에서 생성되는 유동 때문인 것으로 보인다. 한편, 다이어프램 주위 영역의 유동특성을 보여주는 모드 2-5와 후류 벽면의 유동특성을 보여주는 모드 6-9의 에너지 분포가 분출유동 유무에 관계없이 비슷한 특성을 나타냈다. 따라서 연소율이 다이어프램 근처에만 국부적으로 증가하는 이유는 다이어프램 후류에 형성되는 비교적 큰 크기의 유동모드 2-5의 에너지가 증가되었기 때문인 것으로 분석된다.

Keywords

References

  1. Mon, K. O. and Lee, C., "Numerical Investigation on the Vortices Generation on the Blowing Wall with Diaphragm", Asia-Pacific International Symposium on Aerospace Technology, Takamatsu, Japan, 2013.
  2. Berkooz, G., Holmes, P., and Lumley, J. L., "The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows", Annual Review of Fluid Mechanics, Vol. 25, 1993, pp.539-575. https://doi.org/10.1146/annurev.fl.25.010193.002543
  3. Baltzer, J. R. and Adrian, R. J., "Structure, Scaling, and Synthesis of Proper Orthogonal Decomposition Modes of Inhomogeneous Turbulence", Physics of Fluids, Vol. 23, No. 1, 2011, pp. 015107. https://doi.org/10.1063/1.3540663
  4. Aradag, S., Siegel, S., Seidel, J., Cohen, K., and McLaughlin, T., "Filtered POD-based Low-dimensional Modeling of the 3D Turbulent Flow Behind a Circular Cylinder", International Journal for Numerical Methods in Fluids, Vol. 66, No. 1, 2010, pp. 1-16.
  5. Wierman, M., Pomeroy, B., Feldman, T., Hallum, W. Z., and Anderson, W., "Application of Proper Orthogonal Decomposition to Light Intensity Measurements of Combustion Instability", 48th Joint Propulsion Conference & Exhibit, AIAA 2012-4203, Atlanta, GA, 2012.
  6. Kostka, S., Lynch, A. C., Huelskamp, B. C., Kiel, B. V., Gord, J. R., and Roy, S., "Characterization of Flame-shedding Behavior Behind a Bluff-body Using Proepr Orthogonal Decomposition", Combustion and Flame, Vol.159, No. 9, 2012, pp. 2872-2882. https://doi.org/10.1016/j.combustflame.2012.03.021
  7. Hwang, Y. C. and Lee, C., "The Increase in Regression Rate due to Helical Grain in Solid Fuel of Hybrid Rocket", Journal of The Korean Society Aeronautical and Space Sciences, Vol. 34, No. 12, 2006, pp. 59-66. https://doi.org/10.5139/JKSAS.2006.34.12.059
  8. Carmicino, C. and Sorge, A. R., "Role of Injection in Hybrid Rockets Regression Rate Behavior", Journal of Propulsion and Power, Vol. 21, No. 4, 2005, pp. 606-612. https://doi.org/10.2514/1.9945
  9. George, P., Krishnan, S., Varkey, P. M., Ravindran, M., and Ramachandran, L., "Fuel Regression Rate in Hydroxyl-terminatedpolybutadiene/ gaseous-oxygen Hybrid Rocket Motors", Journal of Propulsion and Power, Vol. 17, No. 1, pp. 35-42.
  10. Kerschen, G., Golinval, J. C., Vakaki, A. F., and Bergman, L. A., "The Method of Proper Orthogonal Decomposition for Dynamical Characterization and Order Reduction of Mechanical Systems: An Overview", Nonlinear Dynamics, Vol. 41, No. 1, 2005, pp. 147-169. https://doi.org/10.1007/s11071-005-2803-2
  11. Sirovich, L., "Turbulence and the Dynamics of Coherent Structures. Part 1: Coherent Structures," Quarterly of Applied Mathematics, Vol. 45, No. 3, 1987, pp. 561-571.
  12. Meyer, K. E., Pedersen, J. M., and Ozcan, O., "Turbulent Jet in Crossflow Analysed with Proper Orthogonal Decomposition", Journal of Fluid Mechanics, No. 583, 2007, pp. 199-227.
  13. Koo, H., Mon, K. O., and Lee, C., "Effect of a block on flow oscillations near evaporating solid fuel surface", Aerospace Science and Technology, Vol. 30, No. 1, 2013, pp. 269-277. https://doi.org/10.1016/j.ast.2013.08.011
  14. Orellano, A., Wengle, H., "POD Analysis of Coherent Structures in Forced Turbulent Flow over a Fence", Journal of Turbulence, Vol. 2, No. 1, 2001, pp. 008. https://doi.org/10.1088/1468-5248/2/1/008