DOI QR코드

DOI QR Code

Physical Habitat Simulation Considering Stream Morphology Change due to Flood

홍수에 의한 하도변형을 고려한 물리서식처 모의

  • 이성진 (연세대학교 대학원 토목환경공학과) ;
  • 김승기 (연세대학교 대학원 토목환경공학과) ;
  • 최성욱 (연세대학교 공과대학 토목환경공학과)
  • Received : 2013.11.28
  • Accepted : 2014.04.28
  • Published : 2014.06.01

Abstract

This study investigates the impact of morphological change on the physical habitat simulation. For this, CCHE2D model is used for the hydraulic analysis including the morphological change, and the physical habitat suitability is assessed with habitat suitability curves. The model is applied to a 2.5km long reach downstream of the Goesan Dam, from Sujeon Bridge to Daesu Weir. Flow data of discharge and stage in July, 2006 are used in the computation. The numerical model is verified by means of comparison with the measured water surface elevation data, and the variation of the river bed is not verified in this study. Adult Zacco platypus is chosen for the dominant species. Physical habitat simulations result in composite habitat suitability and weighted usable area for drought, low, normal, and averaged-wet flows. The simulation results indicate that the composite suitability index increased at reaches right downstream of the Sujeon Bridge and around the bend. This also increased weighted usable area by 5.4-11.3%.

본 연구에서는 하상변동의 고려가 물리서식처 모의에 미치는 영향을 검토하였다. 이를 위해 수리 및 이동상 계산은 CCHE2D 모형을 이용하였으며 서식처 적합도 곡선을 사용하여 서식처 평가를 실시하였다. 적용구간은 달천 유역 괴산댐 하류 수전교에서 대수보까지 약 2.5km 구간이며, 2006년 7월 홍수기 시 실측된 유량 및 수위자료를 이용하여 이동상 모의를 수행하였다. 수치모형의 검증은 실측된 수위와의 비교를 통해 수행되었으며 하상변동의 검증은 실시 하지 않았다. 물리서식처 분석은 우점종인 성어기 피라미를 대상으로 실시하였다. 고정상과 이동상 조건에서 각각 갈수량, 저수량, 평수량, 풍수량의 유랑조건에 대한 복합서식처 적합도 지수 분포를 모의하고 가중가용면적을 산정하였다. 모의 결과, 이동상 조건에서 모의구간의 상류 및 만곡부에서 복합 서식처 적합도지수가 상승하는 결과를 확인하였다. 또한 가중가용면적은 이동상 고려 시 5.4~11.3%정도 증가하는 것을 확인하였다.

Keywords

References

  1. Almeida, G. A. M. and Rodriguez, J. F. (2009). "Integrating sediment dynamics into physical habitat model." 18th World IMACS / MODSIM Congress, Cairns, Australia.
  2. Bovee, K. D. (1982). A guide to stream habitat analysis using the instream flow incremental methodology, Instream Flow Information Paper No. 12, Fish and Wildlife Service, U.S. FWS/OBS-82/26, Fort Collins, CO.
  3. Bovee, K. D., Lamb, B. L., Bartholow, J. M., Stalnaker, C. B., Taylor, J. and Henriksen, J. (1998). Stream habitat analysis using the instream flow incremental methodology, Biological Resources Division Information and Technology Report (USGS/BRD-1998-0004), U.S. Geological Survey, Fort Collins, CO.
  4. Gard, M. (2009). "Comparison of spawning habitat predictions of PHABSIM and River2D models." International Journal of River Basin Management, Vol. 7, No. 1, pp. 55-71. https://doi.org/10.1080/15715124.2009.9635370
  5. He, Z., Wu, W. and Wang, S. S. Y. (2006). "A depth-averaged 2-D analysis of fish habitat suitability impacted by vegetation and sediment." Proceedings of the 2006 World Environmental and Water Resources Congress, Omaha, NE.
  6. Im, D., Kang, H., Kim, K. H. and Choi, S. U. (2011). "Changes of river morphology and physical fish habitat following weir removal." Ecological Engineering, Vol. 37, No. 6, pp. 883-892. https://doi.org/10.1016/j.ecoleng.2011.01.005
  7. Jia, Y. and Wang, S. S. Y. (2001). CCHE2D: Two-dimensional hydrodynamic and sediment transport model for unsteady open channel flows over loose bed, Technical Report (NCCHE-TR-2001-1), National Center for Computational Hydroscience and Engineering, University of Mississippi, MS.
  8. Kang, H., Im, D., Hur, J. W. and Kim, K. H. (2011). "Estimation of habitat suitability index of fish species in the Geum river watershed." Journal of the Korean Society of Civil Engineers, Korean Society of Civil Engineers, Vol. 31, No. 2B, pp. 193-203 (in Korean).
  9. KICT (2007). Technology for surface water resources investigation, The 21st Century Frontier R&D Program-Sustainable Water Resources Research Program, Ministry of Science and Technology (in Korean).
  10. Kim, J. S., Lee, C. J. and Kim, W. (2007). "Calculation of Roughness Coefficient in Gravel-bed River with Observed Water Levels." Journal of Korea Water Resources Association, Korea Water Resources Association, Vol. 40, No. 10, pp. 755-768 (in Korean). https://doi.org/10.3741/JKWRA.2007.40.10.755
  11. Kuhlne, R. A. (1993). "Fluvial transport of sand and gravel mixtures with bimodal size distributions." Sedimentary Geology, Vol. 85, pp. 17-24. https://doi.org/10.1016/0037-0738(93)90072-D
  12. Lee, C. J., Kim, J. S., Kim, C. Y. and Kim, D. G. (2008). "Application of slope-area discharge estimation method using continuously observed water level data in a gravel bed river." Journal of Korea Water Resources Association, Vol. 41, No. 5, pp. 503-515 (in Korean). https://doi.org/10.3741/JKWRA.2008.41.5.503
  13. Limerinos, J. T. (1970). Determination of the Manning coefficient from measured bed roughness innatural channels, U.S. Geological Survey Water-Supply Paper 1898-B., U.S. Geological Survey.
  14. Liu, X. L. (1986). Nonuniform bed load transport rate and coarsening stabilization, Master's Thesis, Chengdu University of Technology, China.
  15. Maddock, I. (1999). "The importance of physical habitat assessment for evaluating river health." Freshwater biology, Vol. 41, No. 2, pp. 373-391. https://doi.org/10.1046/j.1365-2427.1999.00437.x
  16. Milhous, R. T., Updike, M. A. and Schneider, D. M. (1989). "Physical habitat simulation system reference manual-version II." Information Paper No. 26., U.S. Fish and Wildlife Service, FWS/OBS-89/16, Fort Collins, CO.
  17. MLTMA (2009). Development of techniques for creation of wildlife habitat, Ecoriver 21 Research Center (in Korean).
  18. MOCT (1995). The Dal River fundamental planning report for river improvement works (local river), River Planning Division (in Korean).
  19. Samaga, B. R., Ranga Raju, K. G. and Garde, R. J. (1986a). "Bed load transport rate of sediment mixture." Journal of Hydraulic Engineering, Vol. 11, pp. 1003-1018.
  20. Samaga, B. R., Ranga Raju, K. G. and Garde, R. J. (1986b). "Suspended load transport rate of sediment mixture." Journal of Hydraulic Engineering, Vol. 11, pp. 1019-1038.
  21. Seo, I. W., Park, S. W., Song, C. G. and Kim, S. E. (2010). "Analysis of fish physical habitat changes due to river improvement." Proceeding of the Korea Water Resources Association Conference, pp. 551-555 (in Korean).
  22. Yi, Y., Wang, Z. and Yang, Z. (2010). "Two-dimensional habitat modeling of chinese sturgeon spawning sites." Ecological Modelling, Vol. 221, No. 5, pp. 864-875. https://doi.org/10.1016/j.ecolmodel.2009.11.018
  23. Wilcock, P. R. and McArdell, B. W. (1993). "Surface-based fractional transport rate: Mobilization Thresholds and Partial Transport of a Sand-Gravel Sediment." Water Resources Research, Vol. 29, No. 24, pp. 1297-1312. https://doi.org/10.1029/92WR02748
  24. Williams, G. P. and Rosgen, D. L. (1989). Measured total sediment load (suspended load and bed load) for 93 United States stream, Open-File Report 89-67, U.S. Geological Survey, Washington, D.C.
  25. Wu, W., Wang, S. S. Y. and Jia, Y. (2000). "Nonuniform sediment transport in Alluvial rivers." Journal of Hydraulic Research, IAHR, Vol. 38, No. 6, pp. 427-434. https://doi.org/10.1080/00221680009498296

Cited by

  1. Physical habitat simulation for a fish community using the ANFIS method vol.43, 2018, https://doi.org/10.1016/j.ecoinf.2017.09.001
  2. Physical habitat simulations of the Dal River in Korea using the GEP Model vol.83, 2015, https://doi.org/10.1016/j.ecoleng.2015.06.042
  3. Application of Habitat Suitability Models for Assessing Climate Change Effects on Fish Distribution vol.3, pp.2, 2016, https://doi.org/10.17820/eri.2016.3.2.134
  4. Test of a Physical Habitat Model for Stream Restoration : A Case Study on Midstream of Anyang-Cheon vol.31, pp.1, 2015, https://doi.org/10.15681/KSWE.2015.31.1.35