DOI QR코드

DOI QR Code

Development of 3-D Hydrodynamical Model for Understanding Numerical Analysis of Density Current due to Salinity and Temperature and its Verification

염분과 온도차에 의한 밀도류 해석을 위한 3차원 동수역학적 수치모델의 개발 및 검증

  • 이우동 (국립경상대학교 해양산업연구소) ;
  • 허동수 (국립경상대학교 해양토목공학과)
  • Received : 2013.09.04
  • Accepted : 2014.02.25
  • Published : 2014.06.01

Abstract

In order to analyze the density current due to salt and temperature difference, this study develops new numerical model (LES-WASS-3D ver. 2.0) by introducing state equation for salt and temperature and 3D advection-diffusion equation to existing 3D numerical wave tank (LES-WASS-3D ver. 1.0). To verify the applicability, the newly-developed numerical model is analyzed comparing to the experimental result of existing numerical model. In the result, it well implement the behavior and vertical salt concentration of advected and diffused seawater as well as flow velocity and temperature of the discharged warm water. This confirms the validity and effectiveness of the developed numerical model.

본 연구에서는 염분과 온도차에 의한 밀도류를 해석하기 위하여 기존의 3차원 파동장 모델(LES-WASS-3D ver. 1.0)을 토대로 염분과 온도에 관한 상태방정식 및 3차원 이류-확산 방정식을 도입하여 새로운 수치모델(LES-WASS-3D ver. 2.0)을 개발하였다. 새롭게 개발한 수치모델의 적용성을 검토하기 위하여 기존의 수리모형실험결과와 비교 분석하였다. 그 결과, 이류-확산하는 해수의 형태 및 연직 염분농도 뿐만 아니라 방출하는 온수의 유속 및 온도를 매우 잘 재현하는 것으로 나타났다. 이로써 본 연구에서 개발한 수치모델의 타당성 및 유효성이 검증되었다.

Keywords

References

  1. Benjamin, B. T. (1968). "Gravity current and related phenomena." J. Fluid Mech., Vol. 31, pp. 209-248. https://doi.org/10.1017/S0022112068000133
  2. Brackbill, J. U., Kothe, D. B. and Zemach, C. (1992). "A continuum model for modeling surface tension." J. Comp. Phys., Vol. 100, pp. 335-354. https://doi.org/10.1016/0021-9991(92)90240-Y
  3. Cantero, M., Balachandar, S., Garcia, M. and Ferry, J. (2006). "Direct numerical simulations of planar and cylindrical density currents." J. Appl. Mech., ASME, Vol. 73, pp. 923-930. https://doi.org/10.1115/1.2173671
  4. Cummins, S. J., Francois, M. M. and Kothe, D. B. (2005). "Estimating curvature from volume fractions." Comput. Struct., Vol. 83, pp. 425-434. https://doi.org/10.1016/j.compstruc.2004.08.017
  5. De Cesare, D., Boillat, J. L. and Schleiss, A. J. (2006). "Circulation in stratified lakes due to flood-induced turbidity currents." J. Environ. Eng., ASCE, Vol. 132, pp. 1508-1517. https://doi.org/10.1061/(ASCE)0733-9372(2006)132:11(1508)
  6. Ergun, S. (1952). "Fluid flow through packed columns." Chemical Eng., Vol. 48, No. 2, pp. 89-94.
  7. Farhanieh, B., Firoozabadi, B. and Rad, M. (2001). "The propagation of turbulent density currents on sloping beds." Scientia Iranica, Vol. 8, pp. 130-137.
  8. Firoozabadi, B., Afshin, H. and Aram, E. (2009). "Three-dimensional modeling of density current in a straight channel." J. Hydr. Eng., Vol. 135, No. 5, pp. 393-402. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000026
  9. Georgoulas, A. N., Angelidis, P. B., Panagiotidis, T. G. and Kotsovinos, N. E. (2010). "3D numerical modelling of turbidity currents." Envir. Fluid Mech., Vol. 10, No. 6, pp. 603-635. https://doi.org/10.1007/s10652-010-9182-z
  10. Germano, M., Piomelli, U., Moin, P. and Cabot, W. H. (1991). "A dynamic subgrid-scale eddy viscosity model." Physics of Fluids, Vol. 3, pp. 1760-1765. https://doi.org/10.1063/1.857955
  11. Gill, A. E. (1982). "Atmosphere-ocean dynamics." New York, Academic Press.
  12. Gregg, M. C. D'Asaro, E. A., Shay, T. J. and Larson, N. (1986). "Observations of persistent mixing and near-inertial internal waves." J. Phys. Oceanogr., Vol. 16, pp. 856-885. https://doi.org/10.1175/1520-0485(1986)016<0856:OOPMAN>2.0.CO;2
  13. Han, J. S., Park, S. K., Jung, S. W. and Roh, T. Y (2011). "The study of salinity distribution at Nakdong river estuary." Journal of Korean Society of Coastal and Ocean Engineers, Korean Society of Coastal and Ocean Engineers, Vol. 23, No. 1, pp. 101-108 (in Korean). https://doi.org/10.9765/KSCOE.2011.23.1.101
  14. Hormozi, S., Firoozabadi, B. and Ghasvari, H. (2008). "Characteristic variables and entrainment in 3-D density currents." Scientia Iranica, Vol. 15, pp. 575-583.
  15. Huppert, H. E. and Simpson, J. E. (1980). "The slumping of gravity currents." J. Fluid Mech., Vol. 99, pp. 785-799. https://doi.org/10.1017/S0022112080000894
  16. Hur, D. S., Lee, W. D. and Cho, W. C. (2012). "Three-dimensional flow characteristics around permeable submerged breakwaters with open inlet." Ocean Eng., Vol. 44, pp. 100-116. https://doi.org/10.1016/j.oceaneng.2012.01.029
  17. Hur, D. S., Lee, W. D., Kim, M. K. and Yoon, J. S. (2013). "Application of 3-D numerical method (LES-WASS-3D) to estimation of nearshore current at songdo beach with submerged breakwaters." Journal of ocean engineering and technology, the Korean Society of Ocean Engineers, Vol. 24, No. 4, pp. 14-21 (in Korean). https://doi.org/10.5574/KSOE.2013.27.4.014
  18. Lal, P. B. B. and Rajaratham, N. (1977). "Experimental study of bluff buoyant turbulent surface jets." J. Hydraul. Res., Vol. 15, No. 3, pp. 261-275. https://doi.org/10.1080/00221687709499647
  19. Lee, H. E. and Choi, S. U. (2009). "Numerical simulations of discontinuous density currents using k-${\varepsilon}$ model." Journal of the Korean Society of Civil Engineers, Korean Society of Civil Engineers, Vol. 29, No. 3-B, pp. 231-237 (in Korean).
  20. Lee, W. D. (2012). Three-dimensional hydrodynamic characteristics on wave-current interaction with density difference in the vicinity of a river mouth, Ph.D. Thesis, Nagoya Univ., Japan, p. 210.
  21. Lilly, D. K. (1991). "A proposed modification of the Germano subgrid-scale closure method." Phy. Fluids, Vol. 4, pp. 633-635.
  22. Liu, S. and Masliyah, J. H. (1999). "Non-linear flows porous media." J. Non-Newtonian Fluid Mech., Vol. 86, pp. 229-252. https://doi.org/10.1016/S0377-0257(98)00210-9
  23. Marmoush, Y. R., Smith, A. A. and Hamblin, P. F. (1984). "Pilot experiments on thermal bar in lock exchange flow." J. Energy Eng., ASCE, Vol. 110, pp. 215-227. https://doi.org/10.1061/(ASCE)0733-9402(1984)110:3(215)
  24. Mellor, G. L. and Yamada, M. (1982). "Development of a turbulence closure model for geophysical fluid problems." Rev. Geophys., Vol. 20, pp. 851-875. https://doi.org/10.1029/RG020i004p00851
  25. Mueller, C. and Carbone, R. (1987). "Dynamics of a thunderstorm outflow." J. Atmos. Sci., Vol. 44, pp. 1879-1898. https://doi.org/10.1175/1520-0469(1987)044<1879:DOATO>2.0.CO;2
  26. Natale, M. D. and Vicinanza, D. (2001). "An experimental study of heated surface jet in a wave environment." Int. J. Offshore Polar Eng., Vol. 11, pp. 396-403.
  27. Paik, J., Eghbalzadeh, A. and Sotiropoulos, F. (2009). "Three-dimensional unsteady RANS modeling of discontinuous gravity currents in rectangular domains." J. Hydr. Eng., Vol. 135, No. 6, pp. 505-521. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000034
  28. Patterson, M. D., Simpson, J. E., Dalziel, S. B. and Nikiforakis, N. (2005). "Numerical modelling of two-dimensional and axisymmetric gravity currents." Int. J. Numer. Meth. Fluids, Vol. 47, pp. 1221-1227. https://doi.org/10.1002/fld.841
  29. Peters, F., Gregg, M. C. and Toole, J. M. (1988). "On the parameterization of equatorial turbulence." J. Geophys. Res., Vol. 93, pp. 1199-1218. https://doi.org/10.1029/JC093iC02p01199
  30. Riley, J. P. and Skirrow, G. (1965). "Chemical oceanography." Vol. 3, Academic Press.
  31. Sakakiyama, T. and Kajima, R. (1992). "Numerical simulation of nonlinear wave interacting with permeable breakwater." Proc. 23rd Int. Conf. on Coastal Eng., ASCE, Venice, pp. 1517-1530.
  32. Sato, T., Tonoki, K., Yoshikawa, T. and Tsuchiya, Y. (2006). "Numerical and hydraulic simulations of the effect of density current generator in a semi-enclosed tidal bay." Coastal Eng., Vol. 53, pp. 49-64. https://doi.org/10.1016/j.coastaleng.2005.08.001
  33. Shanack, S. (1960). "A theoretical current density ansatz for the quiet day solar semi-diurnal tidal mode of oscillation of the ionosphere." J. Atmos. and Terre. Phys., Vol. 17, pp. 337-343. https://doi.org/10.1016/0021-9169(60)90148-3
  34. Simpson, J. E. (1969). "A comparison between laboratory and atmospheric density currents." Quart. J. Roy. Meteor. Soc., Vol. 95, pp. 758-765. https://doi.org/10.1002/qj.49709540609
  35. Smagorinsky, J. (1963). "General circulation experiments with the primitive equation." Mon. Weath. Rev., Vol. 91, No. 3, pp. 99-164. https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
  36. Thomas, L. P., Marino, B. M. and Linden, P. F. (1998). "Gravity currents over porous substrates." J. Fluid Mech., Vol. 366, pp. 239-258. https://doi.org/10.1017/S0022112098001438
  37. Thomas, L. P., Marino, M. B. and Linden, P. F. (2004). "Lock-release inertial gravity currents over a thick porous layer." J. Fluid Mech., Vol. 503, pp. 299-319. https://doi.org/10.1017/S0022112004007918
  38. Wakimoto, R. M. (1982). "The life cycle of thunderstorm gust fronts as viewed with doppler radar and rawinsonde data." Mon. Wea. Rev., Vol. 110, pp. 1060-1082. https://doi.org/10.1175/1520-0493(1982)110<1060:TLCOTG>2.0.CO;2
  39. White, B. L. and Helfrich, K. R. (2008). "Gravity currents and internal waves in a stratified fluid." J. Fluid Mech., Vol. 616, pp. 327-356. https://doi.org/10.1017/S0022112008003984
  40. Yoon, J. S., Kim, M. K., Han, D. J. and Kim, G. Y. (2008). "A study on the numerical model of current of strafication considering the topographic heat accumulation effect in the coastal area." Journal of ocean engineering and technology, the Korean Society of Ocean Engineers, Vol. 22, No. 5, pp. 61-68 (in Korean).

Cited by

  1. Numerical Simulation on Seawater Intrusion in Coastal Aquifer using N-S Solver Based on Porous Body Model vol.48, pp.12, 2015, https://doi.org/10.3741/JKWRA.2015.48.12.1023
  2. Characteristics of Surface and Internal Wave Propagation through Density Stratification vol.36, pp.5, 2016, https://doi.org/10.12652/Ksce.2016.36.5.0819
  3. Application of 3-D Numerical Wave Tank for Dynamic Analysis of Nonlinear Interaction between Tsunami and Vegetation vol.36, pp.5, 2016, https://doi.org/10.12652/Ksce.2016.36.5.0831
  4. Development of a 3-D Coupled Hydro-Morphodynamic Model between Numerical Wave Tank and Morphodynamic Model under Wave-Current Interaction vol.34, pp.5, 2014, https://doi.org/10.12652/Ksce.2014.34.5.1463
  5. Applicability of Permeable Submerged Breakwater for Discharged Flow Control vol.49, pp.1, 2016, https://doi.org/10.3741/JKWRA.2016.49.1.51
  6. A Study on Stable Generation of Tsunami in Hydraulic/Numerical Wave Tank vol.36, pp.5, 2016, https://doi.org/10.12652/Ksce.2016.36.5.0805