DOI QR코드

DOI QR Code

Analysis of Dynamically Penetrating Anchor based on Coupled Eulerian-Lagrangian (CEL) Method

Coupled Eulerian-Lagrangian (CEL) 방법을 이용한 Dynamically Penetrating Anchor의 동적 거동 분석

  • 김영호 (서호주대학교 해상기초연구센터) ;
  • 정상섬 (연세대학교 토목환경공학부)
  • Received : 2013.02.11
  • Accepted : 2013.06.29
  • Published : 2014.06.01

Abstract

A fundamental study of the dynamically penetrating anchor (DPA - colloquially known as torpedo anchor) embedded into deep seabed was conducted using measurement data and numerical approaches. Numerical simulation of such a structure penetration was often suffered by severe mesh distortion arising from very large soil deformation, complex contact condition and nonlinear soil behavior. In recent years, a Coupled Eulerian-Lagrangian method (CEL) has been used to solve geomechanical boundary value problems involving large deformations. In this study, 3D finite element analyses using the CEL formulation are carried out to simulate the construction process of dynamic anchors. Through comparisons with results of field measurements, the CEL method in the present study is in good agreement with the general trend observed by in-situ measurements and thus, predicts a realistic large deformation movement for the dynamic anchors by free-fall dropping, which the conventional FE method cannot. Additionally, the appropriate parametric studies needed for verifying the characteristic of dynamic anchor are also discussed.

대수심 부유 구조물의 하부기초 기술 중 하나인 dynamically penetration anchor (DPA 또는 흔히 torpedo anchor로 칭함)의 거동특성을 시험결과 및 수치 해석적 접근을 통해 분석하였다. 기존의 유한요소 해석기법으로는 이러한 대수심 anchor 구조물의 거동 특성을 적절히 모사하기 어렵기 때문에 본 연구에서는 이러한 부분을 해결하기 위해 Coupled Eulerian-Lagrangian (CEL) 법을 통해 지반-구조물 사이에서 발생하는 메쉬(mesh)의 distortion 현상 및 경계조건 등의 문제점을 대변형의 관점에서 해결하고자 하였다. 실측치와의 비교를 통해, CEL 기법의 타당성을 검증하였고, 그 결과 본 연구에서 적용한 CEL 기법이 기존 유한요소 기술로는 구현이 불가능한 대수심 anchoring system의 자유낙하에 의한 전반적인 거동 및 지반의 변형특성을 적절히 예측함을 알 수 있었다. 또한 검증된 기법을 바탕으로 dynamic anchor의 거동에 영향을 주는 여러 요소들에 대한 매개변수 연구를 추가로 수행하였다.

Keywords

References

  1. ABAQUS. (2011). ABAQUS user's and theory manuals, Version 6.11. rhode island: Hibbitt, Karlsson & Sorensen, Inc.
  2. Audibert, J. M. E., Movant, M. N., Won, J. Y. and Gilbert R. B. (2006). "Torpedo piles: Laboratory and Field Research." In Proceedings of the 16th International Offshore and Polar Engineering Conference, San Francisco, pp. 462-468.
  3. Brandao, F. E. N., Henriques, C. C. D., de Araujo, J. B., Ferreira, O. C. G. and dos Santos Amaral, C. (2006). "Albacora leste field development - FPSO P-50 Mooring System Concept and Installation." In Proceedings of the Offshore Technology Conference, Houston, OTC 18243.
  4. Cassidy, M. J. (2012). "Experimental observations of the penetration of spudcan footings in silt." Geotechnique, Vol. 62, No. 8, pp. 727-732. https://doi.org/10.1680/geot.9.T.020
  5. de Aguiar, C. S., de Sousa, J. R. M, Ellwanger, G. B., Porto, E. C., Junior, C. J. and Foppa, D. (2009). "Undrained load capacity of torpedo anchor in cohesive soils." In Proceedings of the 28th International Conference on Offshore Mechanics and Arctic Engineering, OMAE, Honolulu, OMAE 2009-79465.
  6. de Araujo, J. B., Machado, R. D., de Medeiros Junior, C. J. (2004). "High holding power torpedo pile - Results for the First Long Term Application." In Proceedings of the 23rd International Conference on Offshore Mechanics and Arctic Engineering, OMAE, Vancouver, OMAE 2004-51201.
  7. de Sousa, J. R. M., de Aguiar, C. S., Ellwanger, G. B., Porto, E. C., Foppa, D. and de Medeiros, C. J., Jr. (2011). "Undrained load capacity of torpedo anchors embedded in cohesive soils." Journal of Offshore Mechanics and Arctic Engineering, ASME, Vol. 133, No. 2, pp. 021102.1-021102.12.
  8. Fernandes, A., Araujo, J., Almeida, J., Machado, R. and Matos, V. (2006). "Torpedo anchor installation hydrodynamics." Journal of Offshore Mechanics and Arctic Engineering, ASME, Vol. 128, pp. 286-293. https://doi.org/10.1115/1.2355514
  9. Hasanloo, D. and Yu, G. (2011). "A study on the falling velocity of torpedo anchors during acceleration." In Proceedings of the 21th International Offshore and Polar Engineering Conference, Maui, pp. 182-187.
  10. Hossain, M. S., Kim, Y. H., Gaudin, C. and Randolph, M. F. (2013). "Experimental investigation of installation and pull-out of dynamically penetrating anchors in clay and silt." Journal of Geotechnical and Geoenvironmental Engineering, ASCE, submitted on 10 Mar. 2013.
  11. Lieng, J. T., Hove, F. and Tjelta, T. I. (1999). "Deep penetration anchor: subseabed deepwater anchor concept for floaters and other installations." In Proceedings of the 9th International Offshore and Polar Engineering Conference, Brest, pp. 613-619.
  12. Lieng, J. T., Tjelta, T. I. and Skaugset, K. (2010). "Installation of two prototype deep penetrating anchors at the Gjoa Field in the North Sea." In Proceedings of the Offshore Technology Conference, Houston, p. 20758.
  13. Medeiros Jr., C. J. (2002). "Low cost anchor system for flexible risers in deep waters." In Proceedings of the 34th Offshore Technology Conference, Houston, p. 14151.
  14. O'Loughlin, C. D., Randolph, M. F. and Richardson, M. D. (2004). "Experimental and theoretical studies of peep penetrating anchors." In Proceedings of the 36th Offshore Technology Conference, Houston, p. 16841.
  15. O'Loughlin, C. D., Richardson, M. D. and Randolph, M. F. (2009). "Centrifuge tests on dynamically installed anchors." In Proceedings of the 28th International Conference on Ocean, Offshore and Arctic Engineering, Honolulu, p. 80238.
  16. O'Loughlin, C. D., Richardson, M. D., Randolph, M. F. and Gaudin, C. (2013). "Dynamic anchor embedment in clay." Geotechnique, Vol. 62, No. 11, pp. 909-919.
  17. Qiu, G., Henke, S. and Grabe, J. (2011). "Application of a coupled eulerian-lagrangian approach on geomechanical problems involving large deformations." Computers and Geotechnics, Vol. 38, pp. 30-39. https://doi.org/10.1016/j.compgeo.2010.09.002
  18. Randolph, M. F., Gaudin, C., Gourvenec, S. M., White, D. J., Boylan, N. and Cassidy, M. J. (2011). "Recent advances in offshore geotechnics for deep water oil and gas developments." Ocean Engineering, Vol. 38, pp. 818-834. https://doi.org/10.1016/j.oceaneng.2010.10.021
  19. Richardson, M. D., O'Loughlin, C. D., Randolph, M. F. and Gaudin, C. (2009). "Setup following installation of dynamic anchors in normally consolidated clay." Journal of Geotechnical Geoenvironmental Engineering, ASCE, Vol. 135, No. 4, pp. 487-496. https://doi.org/10.1061/(ASCE)1090-0241(2009)135:4(487)
  20. Tho, K. K., Leung C. F., Chow, Y. K. and Swaddiwudhipong, S. (2012). "Eulerian finite-element technique for analysis of jack-up spudcan penetration." International Journal of Geomechanics, ASCE, Vol. 12, No.1, pp. 64-73. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000111
  21. Tian, Y., Wang, D. and Cassidy, M. J. (2011). "Large deformation finite element analysis of offshore geotechnical penetration tests." International Symposium on Computational Geomechanics (ComGeo II) 1, pp. 925-933.

Cited by

  1. Large deformation FE analysis of a debris flow with entrainment of the soil layer 2017, https://doi.org/10.1016/j.compgeo.2017.11.008
  2. Influence Factors on the Degree of Soil Plugging for Open-Ended Piles vol.32, pp.5, 2016, https://doi.org/10.7843/kgs.2016.32.5.27
  3. A Proposed Analytical Model for the Debris Flow with Erosion and Entrainment of Soil Layer vol.32, pp.10, 2016, https://doi.org/10.7843/kgs.2016.32.10.17
  4. A Study on the 3D Analysis of Debris Flow Based on Large Deformation Technique (Coupled Eulerian-Lagrangian) vol.31, pp.12, 2015, https://doi.org/10.7843/kgs.2015.31.12.45
  5. A Study on the Excavation Damage Zone (EDZ) under TBM Advancement Based on Large Deformation Technique (Coupled Eulerian-Lagrangian) vol.32, pp.12, 2016, https://doi.org/10.7843/kgs.2016.32.12.5
  6. A Study on the 3D Analysis of Driven Pile Penetration Based on Large Deformation Technique (Coupled Eulerian-Lagrangian) vol.31, pp.8, 2015, https://doi.org/10.7843/kgs.2015.31.8.29
  7. Design of Rock-berm by Anchor Dragging Simulation using CEL Method vol.31, pp.6, 2017, https://doi.org/10.26748/KSOE.2017.12.31.6.397