DOI QR코드

DOI QR Code

Hierarchical porous carbon nanofibers via electrospinning

  • Raza, Aikifa (State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University) ;
  • Wang, Jiaqi (State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University) ;
  • Yang, Shan (College of Textiles, Donghua University) ;
  • Si, Yang (State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University) ;
  • Ding, Bin (State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University)
  • Received : 2013.11.04
  • Accepted : 2014.01.02
  • Published : 2014.01.31

Abstract

Carbon nanofibers (CNFs) with diameters in the submicron and nanometer range exhibit high specific surface area, hierarchically porous structure, flexibility, and super strength which allow them to be used in the electrode materials of energy storage devices, and as hybrid-type filler in carbon fiber reinforced plastics and bone tissue scaffold. Unlike catalytic synthesis and other methods, electrospinning of various polymeric precursors followed by stabilization and carbonization has become a straightforward and convenient way to fabricate continuous CNFs. This paper is a comprehensive and brief review on the latest advances made in the development of electrospun CNFs with major focus on the promising applications accomplished by appropriately regulating the microstructural, mechanical, and electrical properties of as-spun CNFs. Additionally, the article describes the various strategies to make a variety of carbon CNFs for energy conversion and storage, catalysis, sensor, adsorption/separation, and biomedical applications. It is envisioned that electrospun CNFs will be the key materials of green science and technology through close collaborations with carbon fibers and carbon nanotubes.

Keywords

References

  1. Fitzer E, Gkogkidis A, Heine M. Carbon fibres and their composites (a review). High Temp High Press, 16, 363 (1984).
  2. Iijima S. Helical microtubules of graphitic carbon. Nature, 354, 56 (1991). http://dx.doi.org/10.1038/354056a0.
  3. Liu L, He P, Zhou K, Chen T. Microwave absorption properties of helical carbon nanofibers-coated carbon fibers. AIP Adv, 3, 082112 (2013). http://dx.doi.org/10.1063/1.4818495.
  4. Baker RTK. Catalytic growth of carbon filaments. Carbon, 27, 315 (1989). http://dx.doi.org/10.1016/0008-6223(89)90062-6.
  5. Cooley JF. Apparatus for electrically dispersing fluids. US Patent 692631 (1902).
  6. Huang C, Soenen SJ, Rejman J, Lucas B, Braeckmans K, Demeester J, De Smedt SC. Stimuli-responsive electrospun fibers and their applications. Chem Soc Rev, 40, 2417 (2011). http://dx.doi.org/10.1039/C0CS00181C.
  7. Wang X, Ding B, Sun G, Wang M, Yu J. Electro-spinning/netting: a strategy for the fabrication of three-dimensional polymer nano-fiber/nets. Prog Mater Sci, 58, 1173 (2013). http://dx.doi.org/10.1016/j.pmatsci.2013.05.001.
  8. Shang Y, Si Y, Raza A, Yang L, Mao X, Ding B, Yu J. An in situ polymerization approach for the synthesis of superhydrophobic and superoleophilic nanofibrous membranes for oil-water separation. Nanoscale, 4, 7847 (2012). http://dx.doi.org/10.1039/C2NR33063F.
  9. Wang J, Raza A, Si Y, Cui L, Ge J, Ding B, Yu J. Synthesis of superamphiphobic breathable membranes utilizing $SiO_2$ nanoparticles decorated fluorinated polyurethane nanofibers. Nanoscale, 4, 7549 (2012). http://dx.doi.org/10.1039/C2NR32883F.
  10. Yang L, Raza A, Si Y, Mao X, Shang Y, Ding B, Yu J, Al-Deyab SS. Synthesis of superhydrophobic silica nanofibrous membranes with robust thermal stability and flexibility via in situ polymerization. Nanoscale, 4, 6581 (2012). http://dx.doi.org/10.1039/C2NR32095A.
  11. Dersch R, Steinhart M, Boudriot U, Greiner A, Wendorff JH. Nanoprocessing of polymers: applications in medicine, sensors, catalysis, photonics. Polym Adv Technol, 16, 276 (2005). http://dx.doi.org/10.1002/pat.568.
  12. Ding B, Wang M, Wang X, Yu J, Sun G. Electrospun nanomaterials for ultrasensitive sensors. Mater Today, 13, 16 (2010). http://dx.doi.org/10.1016/S1369-7021(10)70200-5.
  13. Ra EJ, An KH, Kim KK, Jeong SY, Lee YH. Anisotropic electrical conductivity of MWCNT/PAN nanofiber paper. Chem Phys Lett, 413, 188 (2005). http://dx.doi.org/10.1016/j.cplett.2005.07.061.
  14. Zhang L, Hsieh YL. Nanoporous ultrahigh specific surface polyacrylonitrile fibres. Nanotechnology, 17, 4416 (2006). http://dx.doi.org/10.1088/0957-4484/17/17/022.
  15. Kong QQ, Yang MG, Chen CM, Yang YG, Wen YF, Wang MZ. Preparation and characterization of graphene-reinforced polyacrylonitrile-based carbon nanofibers. New Carbon Mater, 27, 188 (2012).
  16. Wu M, Wang Q, Li K, Wu Y, Liu H. Optimization of stabilization conditions for electrospun polyacrylonitrile nanofibers. Polym Degradation Stab, 97, 1511 (2012). http://dx.doi.org/10.1016/j.polymdegradstab.2012.05.001.
  17. Zhang L, Hsieh YL. Carbon nanofibers with nanoporosity and hollow channels from binary polyacrylonitrile systems. Eur Polym J, 45, 47 (2009). http://dx.doi.org/10.1016/j.eurpolymj.2008.09.035.
  18. Wang Y, Serrano S, Santiago-Aviles JJ. Raman characterization of carbon nanofibers prepared using electrospinning. Synth Met, 138, 423 (2003). http://dx.doi.org/10.1016/S0379-6779(02)00472-1.
  19. Wang Y, Santiago-Aviles JJ. Large negative magnetoresistance and two-dimensional weak localization in carbon nanofiber fabricated using electrospinning. J Appl Phys, 94, 1721 (2003). http://dx.doi.org/10.1063/1.1587268.
  20. Zussman E, Chen X, Ding W, Calabri L, Dikin DA, Quintana JP, Ruoff RS. Mechanical and structural characterization of electrospun PAN-derived carbon nanofibers. Carbon, 43, 2175 (2005). http://dx.doi.org/10.1016/j.carbon.2005.03.031.
  21. Kim C, Yang KS, Kojima M, Yoshida K, Kim YJ, Kim YA, Endo M. Fabrication of electrospinning-derived carbon nanofiber webs for the anode material of lithium-ion secondary batteries. Adv Funct Mater, 16, 2393 (2006). http://dx.doi.org/10.1002/adfm.200500911.
  22. Kim C, Yang KS. Electrochemical properties of carbon nanofiber web as an electrode for supercapacitor prepared by electrospinning. Appl Phys Lett, 83, 1216 (2003). http://dx.doi.org/10.1063/1.1599963.
  23. Prilutsky S, Zussman E, Cohen Y. The effect of embedded carbon nanotubes on the morphological evolution during the carbonization of poly(acrylonitrile) nanofibers. Nanotechnology, 19, 165603 (2008). http://dx.doi.org/10.1088/0957-4484/19/16/165603.
  24. Ko F, Gogotsi Y, Ali A, Naguib N, Ye H, Yang GL, Li C, Willis P. Electrospinning of continuous carbon nanotube-filled nanofiber yarns. Adv Mater, 15, 1161 (2003). http://dx.doi.org/10.1002/adma.200304955.
  25. Kim S, Lim SK. Preparation of $TiO_2$-embedded carbon nanofibers and their photocatalytic activity in the oxidation of gaseous acetaldehyde. Appl Catal B, 84, 16 (2008). http://dx.doi.org/10.1016/j.apcatb.2008.02.025.
  26. Oh GY, Ju YW, Jung HR, Lee WJ. Preparation of the novel manganese- embedded PAN-based activated carbon nanofibers by electrospinning and their toluene adsorption. J Anal Appl Pyrolysis, 81, 211 (2008). http://dx.doi.org/10.1016/j.jaap.2007.11.006.
  27. Si Y, Ren T, Ding B, Yu J, Sun G. Synthesis of mesoporous magnetic $Fe_3O_4$@carbon nanofibers utilizing in situ polymerized polybenzoxazine for water purification. J Mater Chem, 22, 4619 (2012). http://dx.doi.org/10.1039/C2JM00036A.
  28. Ren T, Si Y, Yang J, Ding B, Yang X, Hong F, Yu J. Polyacrylonitrile/polybenzoxazine-based $Fe_3O_4$@carbon nanofibers: hierarchical porous structure and magnetic adsorption property. J Mater Chem, 22, 15919 (2012). http://dx.doi.org/10.1039/C2JM33214K.
  29. Ju YW, Choi GR, Jung HR, Lee WJ. Electrochemical properties of electrospun PAN/MWCNT carbon nanofibers electrodes coated with polypyrrole. Electrochim Acta, 53, 5796 (2008). http://dx.doi.org/10.1016/j.electacta.2008.03.028.
  30. Shao D, Wei Q, Zhang L, Cai Y, Jiang S. Surface functionalization of carbon nanofibers by sol-gel coating of zinc oxide. Appl Surf Sci, 254, 6543 (2008). http://dx.doi.org/10.1016/j.apsusc.2008.04.055.
  31. Shin J, Ryu WH, Park KS, Kim ID. Morphological evolution of carbon nanofibers encapsulating SnCo alloys and its effect on growth of the solid electrolyte interphase layer. ACS Nano, 7, 7330 (2013). http://dx.doi.org/10.1021/nn403003b.
  32. Cheng Y, Li T, Fang C, Zhang M, Liu X, Yu R, Hu J. Soft-templated synthesis of mesoporous carbon nanospheres and hollow carbon nanofibers. Appl Surf Sci, 282, 862 (2013). http://dx.doi.org/10.1016/j.apsusc.2013.06.072.
  33. Kim BJ, Kil H, Watanabe N, Seo MH, Kim BH, Yang KS, Kato O, Miyawaki J, Mochida I, Yoon SH. Preparation of novel isotropic pitch with high softening point and solvent solubility for pitchbased electrospun carbon nanofiber. Curr Org Chem, 17, 1463 (2013). http://dx.doi.org/10.2174/1385272811317130013.
  34. Park SH, Kim C, Choi YO, Yang KS. Preparations of pitch-based CF/ACF webs by electrospinning. Carbon, 41, 2655 (2003). http://dx.doi.org/10.1016/S0008-6223(03)00272-0.
  35. Park SH, Kim C, Jeong YI, Lim DY, Lee YE, Yang KS. Activation behaviors of isotropic pitch-based carbon fibers from electrospinning and meltspinning. Synth Met, 146, 207 (2004). http://dx.doi.org/10.1016/j.synthmet.2004.07.004.
  36. Zhu Y, Zhang JC, Zhai J, Zheng YM, Feng L, Jiang L. Multifunctional carbon nanofibers with conductive, magnetic and superhydrophobic properties. Chemphyschem, 7, 336 (2006). http://dx.doi.org/10.1002/cphc.200500407.
  37. Xuyen NT, Ra EJ, Geng HZ, Kim KK, An KH, Lee YH. Enhancement of conductivity by diameter control of polyimide-based electrospun carbon nanofibers. J Phys Chem B, 111, 11350 (2007). http://dx.doi.org/10.1021/jp075541q.
  38. Smirnova VE, Gofman IV, Ivan'kova EM, Didenko AL, Krestinin AV, Zvereva GI, Svetlichnyi VM, Yudin VE. Effect of singlewalled carbon nanotubes and carbon nanofibers on the structure and mechanical properties of thermoplastic polyimide matrix films. Polym Sci Ser A, 55, 268 (2013). http://dx.doi.org/10.1134/S0965545X1304007X.
  39. Seki N, Arai T, Suzuki Y, Kawakami H. Novel polyimide-based electrospun carbon nanofibers prepared using ion-beam irradiation. Polymer, 53, 2062 (2012). http://dx.doi.org/10.1016/j.polymer.2012.03.026.
  40. Kim C, Choi YO, Lee WJ, Yang KS. Supercapacitor performances of activated carbon fiber webs prepared by electrospinning of PMDA-ODA poly(amic acid) solutions. Electrochim Acta, 50, 883 (2004). http://dx.doi.org/10.1016/j.electacta.2004.02.072.
  41. Chung GS, Jo SM, Kim BC. Properties of carbon nanofibers prepared from electrospun polyimide. J Appl Polym Sci, 97, 165 (2005). http://dx.doi.org/10.1002/app.21742.
  42. Kim C, Kim YJ, Kim YA. Fabrication and structural characterization of electro-spun polybenzimidazol-derived carbon nanofiber by graphitization. Solid State Commun, 132, 567 (2004). http://dx.doi.org/10.1016/j.ssc.2004.08.035.
  43. Okuzaki H, Takahashi T, Hara Y, Yan H. Uniaxially aligned carbon nanofibers derived from electrospun precursor yarns. J Polym Sci B, 46, 305 (2008). http://dx.doi.org/10.1002/polb.21368.
  44. Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. Nature, 363, 603 (1993). http://dx.doi.org/10.1038/363603a0.
  45. Kim C, Yang KS, Lee WJ. The use of carbon nanofiber electrodes prepared by electrospinning for electrochemical supercapacitors. Electrochem Solid-State Lett, 7, A397 (2004). http://dx.doi.org/10.1149/1.1801631.
  46. Inagaki M, Konno H, Tanaike O. Carbon materials for electrochemical capacitors. J Power Sources, 195, 7880 (2010). http://dx.doi.org/10.1016/j.jpowsour.2010.06.036.
  47. Ju YW, Park SH, Jung HR, Lee WJ. Electrospun activated carbon nanofibers electrodes based on polymer blends. J Electrochem Soc, 156, A489 (2009). http://dx.doi.org/10.1149/1.3116245.
  48. Guo Q, Zhou X, Li X, Chen S, Seema A, Greiner A, Hou H. Supercapacitors based on hybrid carbon nanofibers containing multiwalled carbon nanotubes. J Mater Chem, 19, 2810 (2009). http://dx.doi.org/10.1039/B820170F.
  49. Kim BH, Kim CH, Yang KS, Rahy A, Yang DJ. Electrospun vanadium pentoxide/carbon nanofiber composites for supercapacitor electrodes. Electrochim Acta, 83, 335 (2012). http://dx.doi.org/10.1016/j.electacta.2012.07.093.
  50. Kim BH, Yang KS, Woo HG. Boron-nitrogen functional groups on porous nanocarbon fibers for electrochemical supercapacitors. Mater Lett, 93, 190 (2013). http://dx.doi.org/10.1016/j.matlet.2012.11.057.
  51. Zhou Z, Wu XF. Graphene-beaded carbon nanofibers for use in supercapacitor electrodes: Synthesis and electrochemical characterization. J Power Sources, 222, 410 (2013). http://dx.doi.org/10.1016/j.jpowsour.2012.09.004.
  52. Kim BH, Yang KS, Ferraris JP. Highly conductive, mesoporous carbon nanofiber web as electrode material for high-performance supercapacitors. Electrochim Acta, 75, 325 (2012). http://dx.doi.org/10.1016/j.electacta.2012.05.004.
  53. Jung KH, Deng W, Smith DW, Jr., Ferraris JP. Carbon nanofiber electrodes for supercapacitors derived from new precursor polymer: poly(acrylonitrile-co-vinylimidazole). Electrochem Commun, 23, 149 (2012). http://dx.doi.org/10.1016/j.elecom.2012.07.026.
  54. Yun YS, Im C, Park HH, Hwang I, Tak Y, Jin HJ. Hierarchically porous carbon nanofibers containing numerous heteroatoms for supercapacitors. J Power Sources, 234, 285 (2013). http://dx.doi.org/10.1016/j.jpowsour.2013.01.169.
  55. Huang J, Liu Y, Hou H, You T. Simultaneous electrochemical determination of dopamine, uric acid and ascorbic acid using palladium nanoparticle-loaded carbon nanofibers modified electrode. Biosensors Bioelectron, 24, 632 (2008). http://dx.doi.org/10.1016/j.bios.2008.06.011.
  56. Wu M, Wang Q, Liu X, Liu H. Biomimetic synthesis and characterization of carbon nanofiber/hydroxyapatite composite scaffolds. Carbon, 51, 335 (2013). http://dx.doi.org/10.1016/j.carbon.2012.08.061.
  57. Tran C, Kalra V. Fabrication of porous carbon nanofibers with adjustable pore sizes as electrodes for supercapacitors. J Power Sources, 235, 289 (2013). http://dx.doi.org/10.1016/j.jpowsour.2013.01.080.
  58. Yousef A, Akhtar MS, Barakat NAM, Motlak M, Yang OB, Kim HY. Effective NiCu NPs-doped carbon nanofibers as counter electrodes for dye-sensitized solar cells. Electrochim Acta, 102, 142 (2013). http://dx.doi.org/10.1016/j.electacta.2013.04.013
  59. Park SH, Kim BK, Lee WJ. Electrospun activated carbon nanofibers with hollow core/highly mesoporous shell structure as counter electrodes for dye-sensitized solar cells. J Power Sources, 239, 122 (2013). http://dx.doi.org/10.1016/j.jpowsour.2013.03.079.
  60. Poudel P, Zhang L, Joshi P, Venkatesan S, Fong H, Qiao Q. Enhanced performance in dye-sensitized solar cells via carbon nanofibers-platinum composite counter electrodes. Nanoscale, 4, 4726 (2012). http://dx.doi.org/10.1039/C2NR30586K.
  61. Park SH, Jung HR, Kim BK, Lee WJ. MWCNT/mesoporous carbon nanofibers composites prepared by electrospinning and silica template as counter electrodes for dye-sensitized solar cells. J Photochem Photobiol A, 246, 45 (2012). http://dx.doi.org/10.1016/j.jphotochem.2012.07.013.
  62. Ji L, Yao Y, Toprakci O, Lin Z, Liang Y, Shi Q, Medford AJ, Millns CR, Zhang X. Fabrication of carbon nanofiber-driven electrodes from electrospun polyacrylonitrile/polypyrrole bicomponents for high-performance rechargeable lithium-ion batteries. J Power Sources, 195, 2050 (2010). http://dx.doi.org/10.1016/j.jpowsour.2009.10.021.
  63. Zou L, Gan L, Kang F, Wang M, Shen W, Huang Z. Sn/C nonwoven film prepared by electrospinning as anode materials for lithium ion batteries. J Power Sources, 195, 1216 (2010). http://dx.doi.org/10.1016/j.jpowsour.2009.08.052.
  64. Wang L, Ding CX, Zhang LC, Xu HW, Zhang DW, Cheng T, Chen CH. A novel carbon-silicon composite nanofiber prepared via electrospinning as anode material for high energy-density lithium ion batteries. J Power Sources, 195, 5052 (2010). http://dx.doi.org/10.1016/j.jpowsour.2010.01.088.
  65. Yu Y, Yang Q, Teng D, Yang X, Ryu S. Reticular Sn nanoparticledispersed PAN-based carbon nanofibers for anode material in rechargeable lithium-ion batteries. Electrochem Commun, 12, 1187 (2010). http://dx.doi.org/10.1016/j.elecom.2010.06.015.
  66. Zhang P, Guo ZP, Huang Y, Jia D, Liu HK. Synthesis of $Co_3O_4$/carbon composite nanowires and their electrochemical properties. J Power Sources, 196, 6987 (2011). http://dx.doi.org/10.1016/j.jpowsour.2010.10.090.
  67. Meschini I, Nobili F, Mancini M, Marassi R, Tossici R, Savoini A, Focarete ML, Croce F. High-performance Sn@carbon nanocomposite anode for lithium batteries. J Power Sources, 226, 241 (2013). http://dx.doi.org/10.1016/j.jpowsour.2012.11.004.
  68. Zou L, Gan L, Lv R, Wang M, Huang ZH, Kang F, Shen W. A film of porous carbon nanofibers that contain Sn/SnOx nanoparticles in the pores and its electrochemical performance as an anode material for lithium ion batteries. Carbon, 49, 89 (2011). http://dx.doi.org/10.1016/j.carbon.2010.08.046.
  69. Kong J, Liu Z, Yang Z, Tan HR, Xiong S, Wong SY, Li X, Lu X. Carbon/$SnO_2$/carbon core/shell/shell hybrid nanofibers: tailored nanostructure for the anode of lithium ion batteries with high reversibility and rate capacity. Nanoscale, 4, 525 (2012). http://dx.doi.org/10.1039/C1NR10962F.
  70. Lee BS, Seo JH, Son SB, Kim SC, Choi IS, Ahn JP, Oh KH, Lee SH, Yu WR. Face-centered-cubic lithium crystals formed in mesopores of carbon nanofiber electrodes. ACS Nano, 7, 5801 (2013). http://dx.doi.org/10.1021/nn4019625.
  71. Wang MX, Huang ZH, Shimohara T, Kang F, Liang K. NO removal by electrospun porous carbon nanofibers at room temperature. Chem Eng J, 170, 505 (2011). http://dx.doi.org/10.1016/j.cej.2011.01.017.
  72. Wang MX, Huang ZH, Shen K, Kang F, Liang K. Catalytically oxidation of NO into $NO_2$ at room temperature by graphitized porous nanofibers. Catal Today, 201, 109 (2013). http://dx.doi.org/10.1016/j.cattod.2012.05.050.
  73. Zhang P, Shao C, Li X, Zhang M, Zhang X, Su C, Lu N, Wang K, Liu Y. An electron-rich free-standing carbon@Au core-shell nanofiber network as a highly active and recyclable catalyst for the reduction of 4-nitrophenol. Phys Chem Chem Phys, 15, 10453 (2013). http://dx.doi.org/10.1039/C3CP50917F.
  74. Lin Z, Ji L, Medford A, Shi Q, Krause W, Zhang X. Electrocatalytic interaction of nano-engineered palladium on carbon nanofibers with hydrogen peroxide and $\beta$-NADH. J Solid State Electrochem, 15, 1287 (2011). http://dx.doi.org/10.1007/s10008-010-1218-2.
  75. Zhang P, Shao C, Zhang Z, Zhang M, Mu J, Guo Z, Liu Y. In situ assembly of well-dispersed Ag nanoparticles (AgNPs) on electrospun carbon nanofibers (CNFs) for catalytic reduction of 4-nitrophenol. Nanoscale, 3, 3357 (2011). http://dx.doi.org/10.1039/C1NR10405E.
  76. Mu J, Shao C, Guo Z, Zhang Z, Zhang M, Zhang P, Chen B, Liu Y. High photocatalytic activity of ZnO-carbon nanofiber heteroarchitectures.ACS Appl Mater Interfaces, 3, 590 (2011). http://dx.doi.org/10.1021/am101171a.
  77. Zhang M, Shao C, Mu J, Huang X, Zhang Z, Guo Z, Zhang P, Liu Y. Hierarchical heterostructures of $Bi_2MoO_6$ on carbon nanofibers: controllable solvothermal fabrication and enhanced visible photocatalytic properties. J Mater Chem, 22, 577 (2012). http://dx.doi.org/10.1039/C1JM13470A.
  78. Tang X, Liu Y, Hou H, You T. Electrochemical determination of L-tryptophan, L-tyrosine and L-cysteine using electrospun carbon nanofibers modified electrode. Talanta, 80, 2182 (2010). http://dx.doi.org/10.1016/j.talanta.2009.11.027.
  79. Tang X, Liu Y, Hou H, You T. A nonenzymatic sensor for xanthine based on electrospun carbon nanofibers modified electrode. Talanta, 83, 1410 (2011). http://dx.doi.org/10.1016/j.talanta.2010.11.019.
  80. Hood AR, Saurakhiya N, Deva D, Sharma A, Verma N. Development of bimetal-grown multi-scale carbon micro-nanofibers as an immobilizing matrix for enzymes in biosensor applications. Mater Sci Eng C, 33, 4313 (2013). http://dx.doi.org/10.1016/j.msec.2013.06.030.
  81. Cui K, Song Y, Guo Q, Xu F, Zhang Y, Shi Y, Wang L, Hou H, Li Z. Architecture of electrospun carbon nanofibers-hydroxyapatite composite and its application act as a platform in biosensing. Sens Actuators B, 160, 435 (2011). http://dx.doi.org/10.1016/j.snb.2011.08.005.
  82. Hu G, Zhou Z, Guo Y, Hou H, Shao S. Electrospun rhodium nanoparticle-loaded carbon nanofibers for highly selective amperometric sensing of hydrazine. Electrochem Commun, 12, 422 (2010). http://dx.doi.org/10.1016/j.elecom.2010.01.009.
  83. Song Y, He Z, Xu F, Hou H, Wang L. pH-controlled electrocatalysis of amino acid based on electrospun cobalt nanoparticles-loaded carbon nanofibers. Sens Actuators B, 166-167, 357 (2012). http://dx.doi.org/10.1016/j.snb.2012.02.069.
  84. Liu Y, Wang D, Xu L, Hou H, You T. A novel and simple route to prepare a Pt nanoparticle-loaded carbon nanofiber electrode for hydrogen peroxide sensing. Biosensors Bioelectron, 26, 4585 (2011). http://dx.doi.org/10.1016/j.bios.2011.05.034.
  85. Lee JS, Kwon OS, Park SJ, Park EY, You SA, Yoon H, Jang J. Fabrication of ultrafine metal-oxide-decorated carbon nanofibers for DMMP sensor application. ACS Nano, 5, 7992 (2011). http://dx.doi.org/10.1021/nn202471f.
  86. Zhang L, Wang X, Zhao Y, Zhu Z, Fong H. Electrospun carbon nano-felt surface-attached with Pd nanoparticles for hydrogen sensing application. Mater Lett, 68, 133 (2012). http://dx.doi.org/10.1016/j.matlet.2011.10.064.
  87. Yang Y, Mei-Hua Z, Gang X, Zheng-Xiong J. Preparation and characterization of PAN-based ultra-fine activated carbon fiber adsorbent. J Porous Mater, 18, 379 (2011). http://dx.doi.org/10.1007/s10934-010-9388-y.
  88. Ma H, Hsiao BS, Chu B. Electrospun nanofibrous membrane for heavy metal ion adsorption. Curr Org Chem, 17, 1361 (2013). http://dx.doi.org/10.2174/1385272811317130003.
  89. Bai Y, Huang ZH, Wang MX, Kang F. Adsorption of benzene and ethanol on activated carbon nanofibers prepared by electrospinning. Adsorption, 19, 1035 (2013). http://dx.doi.org/10.1007/s10450-013-9524-5.
  90. Lee KJ, Shiratori N, Lee GH, Miyawaki J, Mochida I, Yoon SH, Jang J. Activated carbon nanofiber produced from electrospun polyacrylonitrile nanofiber as a highly efficient formaldehyde adsorbent. Carbon, 48, 4248 (2010). http://dx.doi.org/10.1016/j.carbon.2010.07.034.
  91. Schneiderman S, Zhang L, Fong H, Menkhaus TJ. Surface-functionalized electrospun carbon nanofiber mats as an innovative type of protein adsorption/purification medium with high capacity and high throughput. J Chromatogr, 1218, 8989 (2011). http://dx.doi.org/10.1016/j.chroma.2011.10.024.
  92. Si Y, Ren T, Li Y, Ding B, Yu J. Fabrication of magnetic polybenzoxazine-based carbon nanofibers with $Fe_3O_4$ inclusions with a hierarchical porous structure for water treatment. Carbon, 50, 5176 (2012). http://dx.doi.org/10.1016/j.carbon.2012.06.059.
  93. Jain S, Webster TJ, Sharma A, Basu B. Intracellular reactive oxidative stress, cell proliferation and apoptosis of Schwann cells on carbon nanofibrous substrates. Biomaterials, 34, 4891 (2013). http://dx.doi.org/10.1016/j.biomaterials.2013.03.055.
  94. Czarnecki JS, Lafdi K, Joseph RM, Tsonis PA. Hybrid carbon-based scaffolds for applications in soft tissue reconstruction. Tissue Eng A, 18, 946 (2012). http://dx.doi.org/10.1089/ten.tea.2011.0533.
  95. Liu H, Cai Q, Lian P, Fang Z, Duan S, Ryu S, Yang X, Deng X. The biological properties of carbon nanofibers decorated with $\beta$-tricalcium phosphate nanoparticles. Carbon, 48, 2266 (2010). http://dx.doi.org/10.1016/j.carbon.2010.02.042.
  96. Yang Q, Sui G, Shi YZ, Duan S, Bao JQ, Cai Q, Yang XP. Osteocompatibility characterization of polyacrylonitrile carbon nanofibers containing bioactive glass nanoparticles. Carbon, 56, 288 (2013). http://dx.doi.org/10.1016/j.carbon.2013.01.014.

Cited by

  1. Synthesis, characterization, and KOH activation of nanoporous carbon for increasing CO2 adsorption capacity vol.40, pp.7, 2014, https://doi.org/10.1007/s11164-014-1665-y
  2. Electrospinning of Cross-Linked Magnetic Chitosan Nanofibers for Protein Release vol.16, pp.6, 2015, https://doi.org/10.1208/s12249-015-0336-7
  3. nanofibers for enhanced photocatalysis vol.17, pp.29, 2015, https://doi.org/10.1039/C5CE00948K
  4. Polydopamine-derived porous carbon fiber/cobalt composites for efficient oxygen reduction reactions vol.3, pp.46, 2015, https://doi.org/10.1039/C5TA06217A
  5. detection vol.133, pp.44, 2016, https://doi.org/10.1002/app.44170
  6. adsorbents vol.19, 2016, https://doi.org/10.5714/CL.2016.19.099
  7. Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine vol.45, pp.12, 2016, https://doi.org/10.1039/C6CS00135A
  8. Carbon quantum dot-induced self-assembly of ultrathin Ni(OH)2 nanosheets: A facile method for fabricating three-dimensional porous hierarchical composite micro-nanostructures with excellent supercapacitor performance vol.10, pp.9, 2017, https://doi.org/10.1007/s12274-017-1516-4
  9. Influence of the viscosity ratio of polyacrylonitrile/poly(methyl methacrylate) solutions on core–shell fibers prepared by coaxial electrospinning vol.49, pp.6, 2017, https://doi.org/10.1038/pj.2017.8
  10. Review—Advanced Carbon-Supported Organic Electrode Materials for Lithium (Sodium)-Ion Batteries vol.162, pp.14, 2015, https://doi.org/10.1149/2.0031514jes