DOI QR코드

DOI QR Code

Effects of pore structures on electrochemical behaviors of polyacrylonitrile-based activated carbon nanofibers by carbon dioxide activation

  • Lee, Hye-Min (R&D Division, Korea Institute of Carbon Convergence Technology) ;
  • Kim, Hong-Gun (Department of Carbon Fusion Engineering, Jeonju University) ;
  • An, Kay-Hyeok (R&D Division, Korea Institute of Carbon Convergence Technology) ;
  • Kim, Byung-Joo (R&D Division, Korea Institute of Carbon Convergence Technology)
  • Received : 2013.11.08
  • Accepted : 2013.12.15
  • Published : 2014.01.31

Abstract

Activated carbon nanofibers (ACNF) were prepared from polyacrylonitrile (PAN)-based nanofibers using $CO_2$ activation methods with varying activation process times. The surface and structural characteristics of the ACNF were observed by scanning electron microscopy and X-ray diffraction, respectively. $N_2$ adsorption isotherm characteristics at 77 K were confirmed by Brunauer-Emmett-Teller and Dubinin-Radushkevich equations. As experimental results, many holes or cavernous structures were found on the fiber surfaces after the $CO_2$ activation as confirmed by scanning electron microscopy analysis. Specific surface areas and pore volumes of the prepared ACNFs were enhanced within a range of 10 to 30 min of activation times. Performance of the porous PAN-based nanofibers as an electrode for electrical double layer capacitors was evaluated in terms of the activation conditions.

Keywords

References

  1. Lu X, Wang G, Zhai T, Yu M, Xie S, Ling Y, Liang C, Tong Y, Li Y. Stabilized TiN nanowire arrays for high-performance and flexible supercapacitors. Nano Lett, 12, 5376 (2012). http://dx.doi.org/10.1021/nl302761z.
  2. Nyholm L, Nystrom G, Mihranyan A, Stromme M. Toward flexible polymer and paper-based energy storage devices. Adv Mater, 23, 3751 (2011). http://dx.doi.org/10.1002/adma.201004134.
  3. Yu P, Li Y, Yu X, Zhao X, Wu L, Zhang Q. Polyaniline nanowire arrays aligned on nitrogen-doped carbon fabric for high-performance flexible supercapacitors. Langmuir, 29, 12051 (2013). http://dx.doi.org/10.1021/la402404a.
  4. Hao L, Li X, Zhi L. Carbonaceous electrode materials for supercapacitors. Adv Mater, 25, 3899 (2013). http://dx.doi.org/10.1002/adma.201301204.
  5. Lee HM, Kang HR, An KH, Kim HG, Kim BJ. Comparative studies of porous carbon nanofibers by various activation methods. Carbon Lett, 14, 180 (2013). http://dx.doi.org/10.5714/CL.2013.14.3.180.
  6. Lee HM, Bae KM, Kang HR, An KH, Kim HG, Kim BJ. Preparation and characterization of polyacrylonitrile-based porous carbon nanofibers activated by zinc chloride. Appl Chem Eng, 24, 370 (2013).
  7. Kumagai S, Ishizawa H, Toida Y. Influence of solvent type on dibenzothiophene adsorption onto activated carbon fiber and granular coconut-shell activated carbon. Fuel, 89, 365 (2010). http://dx.doi.org/10.1016/j.fuel.2009.08.013.
  8. Al-Saleh MH, Saadeh WH, Sundararaj U. EMI shielding effectiveness of carbon based nanostructured polymeric materials: a comparative study. Carbon, 60, 146 (2013). http://dx.doi.org/10.1016/j.carbon.2013.04.008.
  9. Lim CS, Guzman M, Schaefer J, Minaie B. Fabrication and properties of dense thin films containing functionalized carbon nanofibers. Thin Solid Films, 534, 111 (2013). http://dx.doi.org/10.1016/j.tsf.2013.02.010.
  10. Kim Y, Cho S, Lee S, Lee YS. Fabrication and characterization of porous non-woven carbon based highly sensitive gas sensors derived by magnesium oxide. Carbon Lett, 13, 254 (2012). http://dx.doi.org/10.5714/CL.2012.13.4.254.
  11. Chen Y, Li X, Park K, Song J, Hong J, Zhou L, Mai YW, Huang H, Goodenough JB. Hollow carbon-nanotube/carbon-nanofiber hybrid anodes for Li-ion batteries. J Am Chem Soc, 135, 16280 (2013). http://dx.doi.org/10.1021/ja408421n.
  12. Jain R, Chae HG, Kumar S. Polyacrylonitrile/carbon nanofiber nanocomposite fibers. Composites Sci Technol, 88, 134 (2013). http://dx.doi.org/10.1016/j.compscitech.2013.08.036.
  13. Zhang L, Aboagye A, Kelkar A, Lai C, Fong H. A review: carbon nanofibers from electrospun polyacrylonitrile and their applications. J Mater Sci, 49, 463 (2014). http://dx.doi.org/10.1007/s10853-013-7705-y.
  14. Brunauer S, Emmett PH, Teller E. Adsorption of gases in multimolecular layers. J Am Chem Soc, 60, 309 (1938). http://dx.doi.org/10.1021/ja01269a023.
  15. Dubinin MM. Generalization of the theory of volume filling of micropores to nonhomogeneous microporous structures. Carbon, 23, 373 (1985). http://dx.doi.org/10.1016/0008-6223(85)90029-6.
  16. Dubinin MM. On methods for estimating micropore parameters of carbon adsorbents. Carbon, 26, 97 (1988). http://dx.doi.org/10.1016/0008-6223(88)90014-0.
  17. Wang MX, Huang ZH, Shimohara T, Kang F, Liang K. NO removal by electrospun porous carbon nanofibers at room temperature. Chem Eng J, 170, 505 (2011). http://dx.doi.org/10.1016/j. cej.2011.01.017.

Cited by

  1. Effect of surface modification of carbon felts on capacitive deionization for desalination vol.16, pp.2, 2015, https://doi.org/10.5714/CL.2015.16.2.093
  2. Pore Structure and Electrochemical Properties of Carbon Aerogels as an EDLC-Electrode with Different Preparation Conditions vol.28, pp.1, 2018, https://doi.org/10.3740/MRSK.2018.28.1.50
  3. Nanoimprint lithography of nanoporous carbon materials for micro-supercapacitor architectures vol.10, pp.21, 2018, https://doi.org/10.1039/C8NR01535J