DOI QR코드

DOI QR Code

Chlorine Disinfection in Water Treatment Plants and its Effects on Polyamide Membrane

수처리장에서의 염소살균처리가 폴리아마이드 분리막에 미치는 영향

  • Jun, Byung-Moon (School of Urban & Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Yun, Eun-Tae (School of Urban & Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Han, Sang-Woo (School of Urban & Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Nguyen, Thi Phuong Nga (School of Urban & Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Park, Hyung-Gyu (School of Urban & Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Kwon, Young-Nam (School of Urban & Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST))
  • 전병문 (울산과학기술대학교 도시환경공학부) ;
  • 윤은태 (울산과학기술대학교 도시환경공학부) ;
  • 한상우 (울산과학기술대학교 도시환경공학부) ;
  • 누엔티팡냐 (울산과학기술대학교 도시환경공학부) ;
  • 박형규 (울산과학기술대학교 도시환경공학부) ;
  • 권영남 (울산과학기술대학교 도시환경공학부)
  • Received : 2014.03.24
  • Accepted : 2014.04.29
  • Published : 2014.04.30

Abstract

Demand for water is increasing due to rapid population growth and increased industrial activities. Membrane technologies have attracted most attention as a promising advanced technology for the supply of sustainable water resources. Chemical and structural properties of polyamide membranes, one of the most widely used membranes in water treatment plant, has been reported to be affected by residual chlorine dissolved in water after chlorine disinfection. This paper focuses on the chlorine speciation at various solution pHs and change of surface properties/performance of polyamide membranes due to the chlorine exposure.

인구의 증가와 산업의 발전으로 물에 대한 수요가 점차 증가하고 있는 상황에서 안전하고 지속가능한 수자원을 확보하기 위한 방법으로 분리막을 이용한 수처리가 널리 사용되고 있다. 수처리장에서 가장 널리 사용되고 있는 분리막 중 하나인 폴리아마이드 분리막은 분리막 공정 전 단계에서 수행되는 염소살균 처리 후에 잔류하는 염소에 의해 화학적/구조적으로 영향을 받고 성능이 변화하는 것으로 알려져 있다. 본 논문에서는 pH에 따라 수중에 용해되는 염소의 종변화 및 염소에 노출시 폴리아마이드 분리막의 표면 성질 변화와 성능변화의 원리를 다루었다.

Keywords

References

  1. C. Baird and M. Cann, "Environmental chemistry", W.H.Freeman and Company (2008).
  2. J. Salzman, "Drinking water", Overlook Hardcover (2012).
  3. E.-H. Kim, M. Dwidar, R. J. Mitchell, and Y.-N. Kwon, "Assessing the effects of bacterial predation on membrane biofouling", Water Res., 47, 6024 (2013). https://doi.org/10.1016/j.watres.2013.07.023
  4. J. E. Gu, B. M. Jun, and Y. N. Kwon, "Effect of chlorination condition and permeability of chlorine species on the chlorination of a polyamide membrane", Water Res., 46, 5389 (2012). https://doi.org/10.1016/j.watres.2012.07.030
  5. Y. N. Kwon and J. O. Leckie, "Hypochlorite degradation of crosslinked polyamide membranes I. Changes in chemical/morphological properties", Journal of Membrane Science, 283, 21 (2006). https://doi.org/10.1016/j.memsci.2006.06.008
  6. C. Y. Y. Tang, Y. N. Kwon, and J. O. Leckie, "Characterization of humic acid fouled reverse osmosis and nanofiltration membranes by transmission electron microscopy and streaming potential measurements", Environ. Sci. Technol., 41, 942 (2007). https://doi.org/10.1021/es061322r
  7. J. S. Jensen, Y. F. Lam, and G. R. Helz, "Role of amide nitrogen in water chlorination: Proton nmr evidence", Environmental Science and Technology, 33, 3568 (1999). https://doi.org/10.1021/es980878e
  8. R. Singh, "Polyamide polymer solution behavior under chlorination conditions", Journal of Membrane Science, 88, 285 (1994). https://doi.org/10.1016/0376-7388(94)87015-2
  9. J. Zabicky, "The chemistry of amides", Interscience (1970).
  10. J. Glater and M. R. Zachariah, "Mechanistic study of halogen interaction with polyamide reverse- osmosis membranes", ACS Symp Ser., 345 (1985).
  11. J. E. McMurry, "Organic chemistry", Brooks Cole (2003).
  12. C. Ingold, "Structure and mechanism in organic chemistry", Cornell University Press (1953).
  13. Y.-N. Kwon, S. Hong, H. Choi, and T. Tak, "Surface modification of a polyamide reverse osmosis membrane for chlorine resistance improvement", Journal of Membrane Science, 415, 192 (2012).
  14. K. J. P. Orton, F. G. Soper, and G. Williams, "The chlorination of anilides. Part iii. N-chlorination and c-chlorination as simultaneous side reactions.", Journal of the Chemical Society, 998 (1928). https://doi.org/10.1039/jr9280000998
  15. T. Kawaguchi and H. Tamura, "Chlorine-resistant membrane for reverse osmosis - ii. Preparation of chlorine-resistant polyamide composite membranes", J. Appl. Polym. Sci., 29, 3369 (1984). https://doi.org/10.1002/app.1984.070291114
  16. S. Hong, I. C. Kim, T. Tak, and Y. N. Kwon, "Interfacially synthesized chlorine-resistant polyimide thin film composite (tfc) reverse osmosis (ro) membranes", Desalination, 309, 18 (2013). https://doi.org/10.1016/j.desal.2012.09.025
  17. J.-Y. Koo, R. J. Petersen, and J. E. Cadotte, "Esca characterization of chlorine-damaged polyamide reverse osmosis membrane", Polymer Preprints Division of Polymer Chemistry American Chemical Society, 27, 391 (1986).
  18. S. Avlonitis, W. T. Hanbury, and T. Hodgkiess, "Chlorine degradation of aromatic polyamides", Desalination, 85, 321 (1992). https://doi.org/10.1016/0011-9164(92)80014-Z
  19. N. P. Soice, A. C. Maladono, D. Y. Takigawa, A. D. Norman, W. B. Krantz, and A. R. Greenberg, "Oxidative degradation of polyamide reverse osmosis membranes: Studies of molecular model compounds and selected membranes", J. Appl. Polym. Sci., 90, 1173 (2003). https://doi.org/10.1002/app.12774
  20. M. Taniguchi, M. Kurihara, and S. Kimura, "Boron reduction performance of reverse osmosis seawater desalination process", Journal of Membrane Science, 183, 259 (2001). https://doi.org/10.1016/S0376-7388(00)00596-2
  21. Y. N. Kwon, C. Y. Tang, and J. O. Leckie, "Change of chemical composition and hydrogen bonding behavior due to chlorination of crosslinked polyamide membranes", J. Appl. Polym. Sci., 108, 2061 (2008). https://doi.org/10.1002/app.25657
  22. C. Y. Y. Tang, Y. N. Kwon, and J. O. Leckie, "Probing the nano- and micro-scales of reverse os mosis membranes - a comprehensive characterization of physiochemical properties of uncoated and coated membranes by xps, tem, atr-ftir, and streaming potential measurements", Journal of Membrane Science, 287, 146 (2007). https://doi.org/10.1016/j.memsci.2006.10.038
  23. Y. N. Kwon and J. O. Leckie, "Hypochlorite degradation of crosslinked polyamide membranes - ii. Changes in hydrogen bonding behavior and performance", Journal of Membrane Science, 282, 456 (2006). https://doi.org/10.1016/j.memsci.2006.06.004
  24. Y. N. Kwon, C. Y. Tang, and J. O. Leckie, "Change of membrane performance due to chlorination of crosslinked polyamide membranes", J. Appl. Polym. Sci., 102, 5895 (2006). https://doi.org/10.1002/app.25071
  25. Q. Liu and D. W. Margerum, "Equilibrium and kinetics of bromine chloride hydrolysis", Environ. Sci. Technol., 35, 1127 (2001). https://doi.org/10.1021/es001380r
  26. E. A. Voudrias and M. Reinhard, "Reactivities of hypochlorous and hypobromous acid, chlorine monoxide, hypobromous acidium ion, chlorine, bromine, and bromine chloride in electrophilic aromatic-substitution reacions with p-xylene in water", Environ. Sci. Technol., 22, 1049 (1988). https://doi.org/10.1021/es00174a009
  27. J. A. Sweetman and M. S. Simmons, "Production of bromophenols resulting from the chlorination of waters containing bromide ion and phenol", Water Res., 14, 287 (1980). https://doi.org/10.1016/0043-1354(80)90099-8
  28. V. L. Snoeyink and D. Jenkins, "Water chemistry", Wiley (1980).
  29. Y. K. Kim, N. W. Kim, and Y. T. Lee, "A Study on Chlorine Resistance Improvement of Reverse Osmosis Membrane by Surface Modification", Membrane Journal, 15, 320 (2005).
  30. R. W. Baker, "Membrane separation systems: Recent developments and future directions", William Andrew (1991).
  31. Y. N. Kwon, R. Joksimovic, I. C. Kim, and J. O. Leckie, "Effect of bromide on the chlorination of a polyamide membrane", Desalination, 280, 80 (2011). https://doi.org/10.1016/j.desal.2011.06.046