DOI QR코드

DOI QR Code

The Neuroprotective Effects of Carnosine in Early Stage of Focal Ischemia Rodent Model

  • Received : 2013.08.12
  • Accepted : 2014.02.13
  • Published : 2014.03.28

Abstract

Objective : This study was conducted to elucidate neuroprotective effect of carnosine in early stage of stroke. Methods : Early stage of rodent stroke model and neuroblastoma chemical hypoxia model was established by middle cerebral artery occlusion and antimycin A. Neuroprotective effect of carnosine was investigated with 100, 250, and 500 mg of carnosine treatment. And antioxidant expression was analyzed by enzyme linked immunosorbent assay (ELISA) and western blot in brain and blood. Results : Intraperitoneal injection of 500 mg carnosine induced significant decrease of infarct volume and expansion of penumbra (p<0.05). The expression of superoxide dismutase (SOD) showed significant increase than in saline group in blood and brain (p<0.05). In the analysis of chemical hypoxia, carnosine induced increase of neuronal cell viability and decrease of reactive oxygen species (ROS) production. Conclusion : Carnosine has neuroprotective property which was related to antioxidant capacity in early stage of stroke. And, the oxidative stress should be considered one of major factor in early ischemic stroke.

Keywords

References

  1. Arundine M, Tymianski M : Molecular mechanisms of glutamate-dependent neurodegeneration in ischemia and traumatic brain injury. Cell Mol Life Sci 61 : 657-668, 2004 https://doi.org/10.1007/s00018-003-3319-x
  2. Astrup J, Siesjö BK, Symon L : Thresholds in cerebral ischemia - the ischemic penumbra. Stroke 12 : 723-725, 1981 https://doi.org/10.1161/01.STR.12.6.723
  3. Bonfanti L, Peretto P, De Marchis S, Fasolo A : Carnosine-related dipeptides in the mammalian brain. Prog Neurobiol 59 : 333-353, 1999 https://doi.org/10.1016/S0301-0082(99)00010-6
  4. Broughton BR, Reutens DC, Sobey CG : Apoptotic mechanisms after cerebral ischemia. Stroke 40 : e331-e339, 2009 https://doi.org/10.1161/STROKEAHA.108.531632
  5. Carmichael ST : Rodent models of focal stroke : size, mechanism, and purpose. NeuroRx 2 : 396-409, 2005 https://doi.org/10.1602/neurorx.2.3.396
  6. Chez MG, Buchanan CP, Aimonovitch MC, Becker M, Schaefer K, Black C, et al. : Double-blind, placebo-controlled study of L-carnosine supplementation in children with autistic spectrum disorders. J Child Neurol 17 : 833-837, 2002 https://doi.org/10.1177/08830738020170111501
  7. De Marchis S, Melcangi RC, Modena C, Cavaretta I, Peretto P, Agresti C, et al. : Identification of the glial cell types containing carnosine-related peptides in the rat brain. Neurosci Lett 237 : 37-40, 1997 https://doi.org/10.1016/S0304-3940(97)00800-8
  8. Decker EA, Ivanov V, Zhu BZ, Frei B : Inhibition of low-density lipoprotein oxidation by carnosine histidine. J Agric Food Chem 49 : 511-516, 2001 https://doi.org/10.1021/jf0010533
  9. Dobrota D, Fedorova T, Stvolinsky S, Babusikova E, Likavcanova K, Drgova A, et al. : Carnosine protects the brain of rats and Mongolian gerbils against ischemic injury : after-stroke-effect. Neurochem Res 30 : 1283-1288, 2005 https://doi.org/10.1007/s11064-005-8799-7
  10. Dringen R : Metabolism and functions of glutathione in brain. Prog Neurobiol 62 : 649-671, 2000 https://doi.org/10.1016/S0301-0082(99)00060-X
  11. Erecińska M, Silver IA : Tissue oxygen tension and brain sensitivity to hypoxia. Respir Physiol 128 : 263-276, 2001 https://doi.org/10.1016/S0034-5687(01)00306-1
  12. Fridovich I : Superoxide radical and superoxide dismutases. Annu Rev Biochem 64 : 97-112, 1995 https://doi.org/10.1146/annurev.bi.64.070195.000525
  13. Ginsberg MD : Adventures in the pathophysiology of brain ischemia : penumbra, gene expression, neuroprotection : the 2002 Thomas Willis Lecture. Stroke 34 : 214-223, 2003 https://doi.org/10.1161/01.STR.0000048846.09677.62
  14. Hipkiss AR, Preston JE, Himsworth DT, Worthington VC, Keown M, Michaelis J, et al. : Pluripotent protective effects of carnosine, a naturally occurring dipeptide. Ann N Y Acad Sci 854 : 37-53, 1998 https://doi.org/10.1111/j.1749-6632.1998.tb09890.x
  15. Hossmann KA : Viability thresholds and the penumbra of focal ischemia. Ann Neurol 36 : 557-565, 1994 https://doi.org/10.1002/ana.410360404
  16. Jin CL, Yang LX, Wu XH, Li Q, Ding MP, Fan YY, et al. : Effects of carnosine on amygdaloid-kindled seizures in Sprague-Dawley rats. Neuroscience 135 : 939-947, 2005 https://doi.org/10.1016/j.neuroscience.2005.06.066
  17. Kim HY, Koh SH, Kim SH : Rat models for ischemic stroke. Korean J Stroke 13 : 107-113, 2011 https://doi.org/10.5853/kjs.2011.13.3.107
  18. Koizumi J, Yoshida Y, Nakazawa T, Ooneda G : Experimental studies of ischemic brain edema. I : a new experimental model of cerebral embolism in rats in which recirculation can be introduced in the ischemic area. Jpn J Stroke 8 : 1-8, 1986 https://doi.org/10.3995/jstroke.8.1
  19. Kulik T, Kusano Y, Aronhime S, Sandler AL, Winn HR : Regulation of cerebral vasculature in normal and ischemic brain. Neuropharmacology 55 : 281-288, 2008 https://doi.org/10.1016/j.neuropharm.2008.04.017
  20. Li F, Omae T, Fisher M : Spontaneous hyperthermia and its mechanism in the intraluminal suture middle cerebral artery occlusion model of rats. Stroke 30 : 2464-2470; discussion 2470-2471, 1999 https://doi.org/10.1161/01.STR.30.11.2464
  21. Longa EZ, Weinstein PR, Carlson S, Cummins R : Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20 : 84-91, 1989 https://doi.org/10.1161/01.STR.20.1.84
  22. Maciel EN, Vercesi AE, Castilho RF : Oxidative stress in Ca(2+)-induced membrane permeability transition in brain mitochondria. J Neurochem 79 : 1237-1245, 2001
  23. Markus R, Reutens DC, Kazui S, Read S, Wright P, Pearce DC, et al. : Hypoxic tissue in ischaemic stroke : persistence and clinical consequences of spontaneous survival. Brain 127 (Pt 6) : 1427-1436, 2004 https://doi.org/10.1093/brain/awh162
  24. Min J, Senut MC, Rajanikant K, Greenberg E, Bandagi R, Zemke D, et al. : Differential neuroprotective effects of carnosine, anserine, and N-acetyl carnosine against permanent focal ischemia. J Neurosci Res 86 : 2984-2991, 2008 https://doi.org/10.1002/jnr.21744
  25. Niizuma K, Endo H, Chan PH : Oxidative stress and mitochondrial dysfunction as determinants of ischemic neuronal death and survival. J Neurochem 109 Suppl 1 : 133-138, 2009 https://doi.org/10.1111/j.1471-4159.2009.05897.x
  26. Niizuma K, Yoshioka H, Chen H, Kim GS, Jung JE, Katsu M, et al. : Mitochondrial and apoptotic neuronal death signaling pathways in cerebral ischemia. Biochim Biophys Acta 1802 : 92-99, 2010 https://doi.org/10.1016/j.bbadis.2009.09.002
  27. Piantadosi CA, Zhang J : Mitochondrial generation of reactive oxygen species after brain ischemia in the rat. Stroke 27 : 327-331; discussion 332, 1996 https://doi.org/10.1161/01.STR.27.2.327
  28. Rahman K : Studies on free radicals, antioxidants, and co-factors. Clin Interv Aging 2 : 219-236, 2007
  29. Rajanikant GK, Zemke D, Senut MC, Frenkel MB, Chen AF, Gupta R, et al. : Carnosine is neuroprotective against permanent focal cerebral ischemia in mice. Stroke 38 : 3023-3031, 2007 https://doi.org/10.1161/STROKEAHA.107.488502
  30. Reagan-Shaw S, Nihal M, Ahmad N : Dose translation from animal to human studies revisited. FASEB J 22 : 659-661, 2008 https://doi.org/10.1096/fj.07-9574LSF
  31. Stellingwerff T, Decombaz J, Harris RC, Boesch C : Optimizing human in vivo dosing and delivery of $\beta$-alanine supplements for muscle carnosine synthesis. Amino Acids 43 : 57-65, 2012 https://doi.org/10.1007/s00726-012-1245-7
  32. Stvolinsky SL, Dobrota D : Anti-ischemic activity of carnosine. Biochemistry (Mosc) 65 : 849-855, 2000
  33. Woo KJ : Annual report on the cause of death statistics 2010. Daejeon : Korea National Statistical Office, 2010, pp9

Cited by

  1. Carnosine Attenuates Early Brain Injury Through Its Antioxidative and Anti-apoptotic Effects in a Rat Experimental Subarachnoid Hemorrhage Model vol.35, pp.2, 2015, https://doi.org/10.1007/s10571-014-0106-1
  2. Neuroprotective Effect of Humic Acid on Focal Cerebral Ischemia Injury: an Experimental Study in Rats vol.38, pp.1, 2014, https://doi.org/10.1007/s10753-014-0005-0
  3. Effect of Inducible Co-Stimulatory Molecule siRNA in Cerebral Infarction Rat Models vol.21, pp.None, 2014, https://doi.org/10.12659/msm.894477
  4. Neuroprotective Effect of Resveratrol on Acute Brain Ischemia Reperfusion Injury by Measuring Annexin V, p53, Bcl-2 Levels in Rats vol.58, pp.6, 2014, https://doi.org/10.3340/jkns.2015.58.6.508
  5. 청국장 메탄올 추출물이 T98G 세포와 허혈성 뇌졸중 백서에 미치는 영향 vol.28, pp.6, 2014, https://doi.org/10.9799/ksfan.2015.28.6.965
  6. Systematic review and stratified meta-analysis of the efficacy of carnosine in animal models of ischemic stroke vol.36, pp.10, 2016, https://doi.org/10.1177/0271678x16658302
  7. On the Relationship between Energy Metabolism, Proteostasis, Aging and Parkinson’s Disease: Possible Causative Role of Methylglyoxal and Alleviative Potential of Carnosine vol.8, pp.3, 2014, https://doi.org/10.14336/ad.2016.1030
  8. Compound porcine cerebroside and ganglioside injection attenuates cerebral ischemia–reperfusion injury in rats by targeting multiple cellular processes vol.13, pp.None, 2014, https://doi.org/10.2147/ndt.s129522
  9. Mulberrofuran G Protects Ischemic Injury‐induced Cell Death via Inhibition of NOX4‐mediated ROS Generation and ER Stress vol.31, pp.2, 2017, https://doi.org/10.1002/ptr.5754
  10. Carnosine as an effective neuroprotector in brain pathology and potential neuromodulator in normal conditions vol.51, pp.1, 2019, https://doi.org/10.1007/s00726-018-2667-7
  11. The Study of the Neuroprotective Effects of Carnosine in the Experimental Model of Focal Cerebral Ischemia/Reperfusion vol.13, pp.1, 2014, https://doi.org/10.1134/s1990750819010050
  12. Endogenous BMP-4/ROS/COX-2 Mediated IPC and Resveratrol Alleviated Brain Damage vol.25, pp.9, 2014, https://doi.org/10.2174/1381612825666190506120611
  13. Neuroprotective effect of poly(lactic-co-glycolic acid) nanoparticle-bound brain-derived neurotrophic factor in a permanent middle cerebral artery occlusion model of ischemia in rats vol.80, pp.1, 2014, https://doi.org/10.21307/ane-2020-001
  14. Mechanisms of Neuroprotective Action of Hesperetin and Carnosine in Focal Ischemia of the Brain in Rats vol.169, pp.2, 2014, https://doi.org/10.1007/s10517-020-04859-w
  15. The neuroprotective properties of carnosine in a mouse model of manganism is mediated via mitochondria regulating and antioxidative mechanisms vol.23, pp.9, 2014, https://doi.org/10.1080/1028415x.2018.1552399
  16. Neuroprotective Potential of Carnosine in Cerebrovascular Diseases vol.28, pp.1, 2022, https://doi.org/10.1007/s10989-021-10342-5