DOI QR코드

DOI QR Code

Extracts of Housefly Maggot Reduces Blood Cholesterol in Hypercholesterolemic Rats

고콜레스테롤 랫드에서 파리유충 추출물의 혈액지질 감소기전

  • Park, Byung-Sung (Department of Animal Biotechnology, Kangwon National University) ;
  • Park, Sang-Oh (Institute of Animal Resources, Kangwon National University)
  • 박병성 (강원대학교 동물생명공학과) ;
  • 박상오 (강원대학교 동물자원공동연구소)
  • Received : 2014.02.20
  • Accepted : 2014.03.14
  • Published : 2014.03.30

Abstract

The aim of this study was to evaluate the biological mechanism of orally administered ethanolic extract of fly maggot(EM) on hypocholesterolemic rats fed a high-cholesterol diet. Sprague Dawley male rats were divided into four groups (EM dose control=0, 5.0, 7.0, and 9.0 mg/100 g BW) and were treated for 6 weeks. EM groups revealed a significant reduction in serum triglyceride, total cholesterol, and LDL-C when compared with the control group(p<0.05). HMG-CoA reductase activity in EM groups were lower than those of the control group, but total sterol, neutral sterol, and bile acid excretion were increased in EM groups when compared with the control group(p<0.05). To identify the biological mechanism of EM towards the hypocholesterolemic effect, sterol response element binding proteins (SREBPs) and the peroxisome proliferator-activated receptors ($PPAR{\alpha}$ transcription system were determined in rats fed a high-cholesterol diet. It was discovered that EM suppress the expression of SREBP-$1{\alpha}$ and SREBP-2 mRNA in the liver tissues of high-cholesterol diet fed rats, while simultaneously increasing the expression of $PPAR{\alpha}$ mRNA(p<0.05). This finding indicates that EM may have hypocholesterolemic effects in rats fed a high-cholesterol diet, by regulating cholesterol metabolism-related biochemical parameters and SREBP-$1{\alpha}$ SREPB-2 and $PPAR{\alpha}$gene expression.

본 연구는 고콜레스테롤 식이를 섭취한 랫드에서 파리유충 에탄올추출물(Ethanolic extract of fly maggot, EM)의 경구투여가 혈액 지질감소에 미치는 영향을 조사하였다. Sprague-Dawley 수컷 랫드를 이용하여 4 처리구(EM 투여량; 대조군=0, 5.0, 7.0, 9.0 mg/100 g 체중)로 구분해서 6주 동안 진행하였다. EM 투여군은 대조군과 비교할 때 혈청 중성지방, 총콜레스테롤, LDL-C가 유의하게 낮았다(p<0.05). HMG-CoA reductase activity는 대조군과 비교할 때 EM 투여군에서 낮았으나 총스테롤, 중성스테롤 및 담즙산 배설량은 EM 투여군에서 유의하게 높았다(p<0.05). EM의 혈액 콜레스테롤 감소와 관련한 생물학적 작용기작을 규명하기 위해서 고콜레스테롤 식이를 섭취한 랫드에서 유도된 생체유전자 sterol response element binding proteins (SREBPs) 및 the peroxisome proliferator-activated receptors ($PPAR{\alpha}$) 발현을 측정하였다. EM은 고콜레스테롤 식이를 공급받은 랫드의 간에서 SREBP-$1{\alpha}$, SREBP-2 mRNA 발현을 억압함과 동시에 $PPAR{\alpha}$ mRNA 발현을 촉진시키는 것으로 나타났다(p<0.05). 본 연구의 결과는 파리유충 에탄올추출물이 고콜레스테롤 식이를 섭취한 랫드에서 지질대사와 관련한 생화학적 매개변수 및 유전자발현 조절을 통하여 혈액 콜레스테롤을 낮춘다는 새로운 사실을 발견하였다.

Keywords

References

  1. B. S. Park, N. K. Sungh, and A. M. M. T. Reza, Obesity, obesity-related diseases and application of animal model in obesity research, An overview, J. Korean Oil Chemists' Soc, 30, 622-634 (2013). https://doi.org/10.12925/jkocs.2013.30.4.622
  2. O. Quehenberger, and E. A. Dennis, The Human Plasma Lipidome, New Engl. J. Med, 365, 1812-1823 (2011). https://doi.org/10.1056/NEJMra1104901
  3. O. Belguith, M. Bouaziz, K. Jamoussi, A. F. Feki, S. Sayadi, and F. Makni, Lipid-lowering and antioxidant effects of an ethyl acetate extract of fenugreek seeds in high-cholesterol-fed rats, J. Agric. Food Chem, 58, 2116-2122 (2010). https://doi.org/10.1021/jf903186w
  4. X. Liu, A. Zeng, T. Song, L. Li, F. Yang, Q. Wang, B. Wu, Y. Liu, and X. Zhi, Hypocholesterolemic effects of n-[(2-hydroxy-3-n, n-dimethylhexa decyl ammonium) propyl] chitosan chloride in high-fat-diet-induced rats, J. Biomaterials Sci, 23, 1107-1114 (2012). https://doi.org/10.1163/092050611X575540
  5. L. N. Rodríguez, J. A. Gutiérrez, J. Arriola, D. D. La, R. I. Garza, J. W. Fahey, and S. O. Serna-Saldivar, Broccoli (Brassica oleraceavar. italica) sprouts and extracts rich in glucosinolates and isothiocyanates affect cholesterol metabolism and genes involved in lipid homeostasis in hamsters, J. Agric. Food Chem, 59, 1095-1103 (2011). https://doi.org/10.1021/jf103513w
  6. N. Rotllan, and C. Fernandez, MicroRNA regulation of cholesterol metabolism, Cholesterol, 2012, 8-15 (2012).
  7. A. C. Frazier, J. M. Ordovas, R. J. Straka, J. E. Hixson, I. B. Borecki, H. K. Tiwari, and D. K. Arnett, The PPAR alpha gene is associated with triglyceride, low-density cholesterol and inflammation marker response to fenofibrate intervention: the GOLDN study, The Pharmacogenomics J, 12, 93-95 (2012). https://doi.org/10.1038/tpj.2011.58
  8. G. L. Kelley, and S. Azhar, Reversal of high dietary fructose-induced $PPAR\alpha$ suppression by oral administration of lipoxygenase/cyclooxygenase inhibitors, Nutrition & Metabolism, 2, 18-27 (2005). https://doi.org/10.1186/1743-7075-2-18
  9. N. A. Ratcliffe, C. B. Mello, E. S. Garcia, T. M. Butt, and P. Azambuja, Insect natural products and processes: New treatments for human disease, Insect Biochem. Mol. Biol, 41, 747-842 (2011). https://doi.org/10.1016/j.ibmb.2011.05.007
  10. S. O. Park, and B. S. Park, Effects of grain larvae extracts on hepatotoxicity and blood lipid in obese rats, J. Anim. Veter. Adv, 11, 988-994 (2012). https://doi.org/10.3923/javaa.2012.988.994
  11. J. Domen, L. Ale, Z. Klemen, S. Dragica, and G. C. Nina, Selective antimicrobial activity of maggots against pathogenic bacteria, J. Med. Microbiol, 57, 617-625 (2008). https://doi.org/10.1099/jmm.0.47515-0
  12. A. Bexfield, Y. Nigam, S. Thomas, and N. A. Ratcliffe, Detection and partial characterisation of two antibacterial factors from the excretions/ secretions of the medicinal maggot Lucilia sericata and their activity against methicillin-resistant Staphylococcus aureus (MRSA), Microbes Infect, 6, 1297-1304 (2004). https://doi.org/10.1016/j.micinf.2004.08.011
  13. B. S. Park, A study on the bioactive effect of ethanol extracts from fly larvae, J. Environ. Agri. Res, 9, 9-22 (2007).
  14. S. O. Park, B. S. Park, and J. S. Oh, Antibacterial activity of house fly maggot extract against MRSA and VRE, J. Environ. Biol, 31, 865-871(2010).
  15. Y. Wang, D. Lu, Y. Zhao, C. Lei, and F. Zhu, Antivirial and antitumo activities of the protein fractions from the larvae of house fly, Musca Domestia. African J. Biotechol, 11, 9468-9474 (2012).
  16. A. Jang, B. S. Park, and K. Y. Yoon, Seperation of antibaterial low molecular peptides from Musca domesica maggot against methicillin-resistant Staphylo coccusaureus (MRSA) and vancomycin resistant enterococcus (VRE). 2007 International Symposium and Annual Meeting, The Korean Soc. Food Sci Nutr, October, 275 (2007).
  17. Scot PIL training manual, Glasgow Univ. UK (1994).
  18. P. G. Reeves, F. H. Nielsen, and G. C. Fahey, AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet, J. Nutr, 123, 1939-1951 (1993).
  19. S. O. Park, J. Hwangbo, and B. S. Park, Effects of extreme heat stress and continuous lighting on growth performance and blood lipid in broiler chickens, J. Korean Oil Chemists' Soc, 30, 78-87 (2013)b. https://doi.org/10.12925/jkocs.2013.30.1.078
  20. A. A. Qureshi, N. Abuirmeileh, Z. Z. Din, Y. Ahmad, W. C. Burger, and C. E. Elson, Suppression of cholesterogenesis and reduction of LDLB cholesterol by dietary ginseng and its fractions in chicken liver, Atherosclerosis, 48, 81-94 (1983). https://doi.org/10.1016/0021-9150(83)90019-9
  21. B. S. Park, and A. Jang, Dietary $\beta$-cyclodextrin reduces the cholesterol levels in meats and backfat of finishing pigs, J. Sci. Food Agric, 88, 813-18 (2008). https://doi.org/10.1002/jsfa.3151
  22. SAS SAS User's Guide: Statistics. Version 9.1 Ed. SAS Institute Inc., Cary, NC (2005)
  23. S. S. Cho, L. Prosky, and D. Dreher, Complex carbohydrates in foods, Marcel Dekker, Inc., New York, NY 10016, USA (1999).
  24. B. Sanchez, M. C. Urdaci, and A. Margolles, Extracellular proteins secreted by probiotic bacteria as mediators of effects that promote mucosa-bacteria interactions, Microbiology 156, 3232-3242 (2010). https://doi.org/10.1099/mic.0.044057-0
  25. M. B. Roberfroid, Prebiotics and probiotics: are they functional foods, Am. J. Clin. Nutr, 71, 1682S-1687S (2000).
  26. T. Rogi, N. Tomimori, Y. Ono, and Y. Kiso, The mechanism underlying the synergetic hypocholesterolemic effect of sesamin and $\alpha$-tocopherol in rats fed a high-cholesterol diet, J. Pharmacol. Sci, 115, 408-416 (2011). https://doi.org/10.1254/jphs.10287FP
  27. L. Huang, Y. Sun, H. Zhu, Y. Zhang, J. Xu, and Y. M. Shen, Synthesis and antimicrobial evaluation of bile acid tridentate conjugates, Steroids, 74, 701-706 (2009). https://doi.org/10.1016/j.steroids.2009.03.005
  28. N. Higaki, K. Sato, H. Suda, T. Suzuka, T. Komori T. Saeki, T. Nakamura, K. Ohtsuki K, K. Iwami, and R. Kanamoto, Evidence for the existence of a soybean resistant protein that captures bile acid and stimulates its fecal excretion, Bioscience, Biotechnology, and Biochemistry, 70, 2844-2852 (2006). https://doi.org/10.1271/bbb.60237
  29. N. J. Ha, Antiobesity and lipid-lowering effects of Bifidobacterium spp. in high fat diet-induced obese rats, Lipids in Health and Disease, 10, 116-125 (2011). https://doi.org/10.1186/1476-511X-10-116
  30. G. Ji, X. Zhao, L. Leng, P. Liu, and Z. Jiang, Comparison of dietary control and atorvastatin on high fat diet induced hepatic steatosis and hyperlipidemia in rats, Lipids in Health and Disease, 10, 23-31 (2011). https://doi.org/10.1186/1476-511X-10-23

Cited by

  1. Lipid-lowering mechanism of egg yolk in normal rats vol.51, pp.12, 2016, https://doi.org/10.1111/ijfs.13216
  2. 난황 경구투여가 랫드의 콜레스테롤 대사에 미치는 영향 vol.31, pp.2, 2014, https://doi.org/10.12925/jkocs.2014.31.2.255
  3. 고지방식이 유도 비만 랫드에 대한 유황오곡충 추출물의 지질감소 메카니즘 vol.31, pp.4, 2014, https://doi.org/10.12925/jkocs.2014.31.4.572
  4. C57BL/6 마우스에서 천연 식물성추출물(아벨모)의 발모효능 및 작용 메카니즘 vol.31, pp.4, 2014, https://doi.org/10.12925/jkocs.2014.31.4.653
  5. n-6/n-3 지방산 비율이 비만 랫드의 지질대사에 미치는 영향 vol.35, pp.3, 2014, https://doi.org/10.12925/jkocs.2018.35.3.654
  6. Oleic acid의 여러 물리화학적 성질에 미치는 Cholesterol계 유도체의 영향 vol.36, pp.3, 2019, https://doi.org/10.12925/jkocs.2019.36.3.813