DOI QR코드

DOI QR Code

Free vibration analysis of laminated composite beam under room and high temperatures

  • Cunedioglu, Yusuf (Department of Mechanical Engineering, Faculty of Engineering, Nigde University) ;
  • Beylergil, Bertan (Department of Mechanical Engineering, Faculty of Engineering, Izmir Institute of Technology)
  • Received : 2012.06.07
  • Accepted : 2014.05.09
  • Published : 2014.07.10

Abstract

The aim of this study is to investigate the effects of the beam aspect ratio(L/h), hole diameter, hole location and stacking layer sequence ($[0/45/-45/90]_s$, $[45/0/-45/90]_s$ and $[90/45/-45/0]_s$) on natural frequencies of glass/epoxy perforated beams under room and high (40, 60, 80, and $100^{\circ}C$) temperatures for the common clamped-free boundary conditions (cantilever beam). The first three out of plane bending free vibration of symmetric laminated beams is studied by Timoshenko's first order shear deformation theory. For the numerical analyses, ANSYS 13.0 software package is utilized. The results show that the hole diameter, stacking layer sequence and hole location have important effect especially on the second and third mode natural frequency values for the short beams and the high temperatures affects the natural frequency values significantly. The results are presented in tabular and graphical form.

Keywords

References

  1. Abramovich, H. (1992), "Shear deformation and rotary inertia effects of vibrating composite beams", Compos. Struct., 20(3), 165-173. https://doi.org/10.1016/0263-8223(92)90023-6
  2. Abramovich, H., Eisenberger, M. and Shulepov, O. (1995), "Dynamic stiffness matrix for symmetrically laminated beams using a first order shear deformation theory", Compos. Struct., 31(4), 265-271. https://doi.org/10.1016/0263-8223(95)00091-7
  3. Aksu, G. and Ali, R. (1976), "Determination of dynamic characteristics of rectangular plates with cut-outs using a finite difference formulation", J. Sound Vib., 44(1), 147-158. https://doi.org/10.1016/0022-460X(76)90713-6
  4. Aktas, M. and Karakuzu, R. (2009), "Determination of mechanical properties of glass-epoxy composites in high temperatures", Polym. Compos, 30(10), 1347-1441.
  5. Alam, M.N., Upadhyay, N.K. and Anas M. (2012), "Efficient finite element model for dynamic analysis of laminated composite beam", Struct. Eng. Mech, 42(4), 471-488. https://doi.org/10.12989/sem.2012.42.4.471
  6. Bezazi, A., El Mahi, A., Berthelot, J.M. and Bezzazi, B. (2001), "Analyse de l'endommagement des stratifies en flexion 3-points", Proceedings of the XVeme Congres Francais de Mecanique, France, September.
  7. Bezazi, A., El Mahi, A., Berthelot, J.M. and Bezzazi, B. (2003a), "Flexural fatigue behavior of cross-ply laminates: An experimental approach", Strength Mater., 35(2), 149-161. https://doi.org/10.1023/A:1023762528362
  8. Bezazi, A., El Mahi, A., Berthelot, J.M. and Kondratas, A. (2003b), "Investigation of cross-ply laminates behavior in three-point bending tests. Part II: Cyclic fatigue tests", Mat. Sci., 9(1), 128-133.
  9. Chandrashekhara, K. and Bangera, K.M. (1992), "Free vibration of composite beams using a refined shear flexible element", Comput. Struct., 43(4), 719-727. https://doi.org/10.1016/0045-7949(92)90514-Z
  10. Davidson, B.D., Kruger, R. and Konig, M. (1995), "Three-dimensional analysis of center-delaminated unidirectional and multidirectional single-leg bending specimens", Compos. Sci. Technol., 54(4), 385-394. https://doi.org/10.1016/0266-3538(95)00069-0
  11. El Mahi, A., Berthelot, J.M. and Brillaud, J. (1995), "Stiffness reduction and energy release rate of cross-ply laminates during fatigue tests", Compos. Struct., 30(2), 123-130. https://doi.org/10.1016/0263-8223(94)00061-1
  12. Hassan, G.A., Fahmy, M.A. and Mohammed, I.G. (2009), "Effects of fiber orientation and laminate stacking sequence on out-of plane and in-plane bending natural frequencies of laminated composite beams", Proceedings of 9th PEDAC Conference, Egypt, February.
  13. Hodges, H.D., Atilgan, A.R., Fulton, M.V. and Rehfield, L.W. (1991), "Free vibration analysis of composite beams", J. Am. Helicopt. Soc., 36(3), 36-47. https://doi.org/10.4050/JAHS.36.36
  14. Khdeir, A.A. (1994), "Free vibration of cross-ply laminated beams with arbitrary boundary conditions", Int. J. Eng. Sci., 32(12), 1971-1980. https://doi.org/10.1016/0020-7225(94)90093-0
  15. Kim, C.S., Young, P.G. and Dickinson, S.M. (1990), "On the flexural vibration of rectangular plates approached by using simple polynomials in the Rayleigh-Ritz method", J. Sound Vib., 143(3), 379-394. https://doi.org/10.1016/0022-460X(90)90730-N
  16. Kim, N.I. and Choi D.H. (2013), "Super convergent laminated composite beam element for lateral stability analysis", Steel Compos. Struct., 15(2), 175-202. https://doi.org/10.12989/scs.2013.15.2.175
  17. Kisa, M. (2004), "Free vibration analysis of a cantilever composite beam with multiple cracks", Compos. Sci. Technol., 64(9), 1391-1402. https://doi.org/10.1016/j.compscitech.2003.11.002
  18. Krishnaswamy, S., Chandrahekhara, K. and Wu, W.Z.B. (1992), "Analytical solution to vibration of generally layered composite beams", J. Sound Vib., 159(1), 85-99. https://doi.org/10.1016/0022-460X(92)90452-4
  19. Kwon, Y.W. and Bang, H. (2000), The finite element method using Matlab, 2nd Edition, Dekker Mechanical Engineering Series, CRC Press, Boca Raton.
  20. Lee, C.Y., Liu, D. and Lu, X. (1992), "Static and vibration analysis of laminated composite beams with an interlaminar shear stress continuity theory", Int. J. Numer. Meth. Struct. Eng., 33(2), 409-424. https://doi.org/10.1002/nme.1620330211
  21. Lee, H.S. (1984), "Transverse vibration of rectangular plates having an inner cutout in water", J. Soc. Nav. Arch. Korea, 21(1), 21-34.
  22. Maiti, K.D. and Sinha, P.K. (1994), "Bending and free vibration analysis of shear deformable laminated composite beams by finite element method", Compos. Struct., 29(4), 421-431. https://doi.org/10.1016/0263-8223(94)90111-2
  23. Paramasivam, P. (1973), "Free vibration of square plates with square opening", J. Sound Vib., 30(2), 173- 178. https://doi.org/10.1016/S0022-460X(73)80111-7
  24. Rajamani, A. and Prabhakaran, R. (1977), "Dynamic response of composite plates with cut-outs. Part II:Clamped-clamped plates", J. Sound Vib., 54(4), 565-576. https://doi.org/10.1016/0022-460X(77)90613-7
  25. Ram, K.S. and Sinha, P.K. (1992), "Hygrothermal effects on the free vibration of laminated composite plates", J. Sound Vib., 158(1), 133-148. https://doi.org/10.1016/0022-460X(92)90669-O
  26. Sakiyama, T., Huang, M., Matsuda, H. and Morita, C. (2003), "Free vibration of orthotropic square plates with a square hole", J. Sound Vib., 259(1), 63-80. https://doi.org/10.1006/jsvi.2002.5181
  27. Sharma, A.K. and Mittal, N.D. (2010), "Review on stress and vibration analysis of composite plates", J. Appl. Sci., 10(23), 3156-3166. https://doi.org/10.3923/jas.2010.3156.3166
  28. Shi, G. and Lam, K.Y. (1999), "Finite-element vibration analysis of composite beams based on a higherorder beam theory", J. Sound Vib., 219(4), 707-721. https://doi.org/10.1006/jsvi.1998.1903
  29. Sun, C.T. and Jen, K.C. (1987), "On the effect of matrix cracks on laminate strength", J. Reinf. Plast. Comp., 6(3), 208-223. https://doi.org/10.1177/073168448700600301
  30. Teboub, Y. and Hajela, P. (1995), "Free vibration of generally layered composite beams using symbolic computations", Compos. Struct., 33(3), 123-134. https://doi.org/10.1016/0263-8223(95)00112-3
  31. Teh, K.K. and Huang, C.C. (1979), "The vibrations of generally orthotropic beams, a finite element approach", J. Sound Vib., 62(2), 195-206. https://doi.org/10.1016/0022-460X(79)90021-X

Cited by

  1. A novel approximate solution for nonlinear problems of vibratory systems vol.57, pp.6, 2016, https://doi.org/10.12989/sem.2016.57.6.1039
  2. Free vibration analysis of edge cracked symmetric functionally graded sandwich beams vol.56, pp.6, 2015, https://doi.org/10.12989/sem.2015.56.6.1003
  3. Analytical study of nonlinear vibration of oscillators with damping vol.9, pp.1, 2015, https://doi.org/10.12989/eas.2015.9.1.221
  4. High conservative nonlinear vibration equations by means of energy balance method vol.11, pp.1, 2016, https://doi.org/10.12989/eas.2016.11.1.129
  5. Energy based approach for solving conservative nonlinear systems vol.13, pp.2, 2017, https://doi.org/10.12989/eas.2017.13.2.131
  6. Geometrically nonlinear analysis of a laminated composite beam vol.66, pp.1, 2014, https://doi.org/10.12989/sem.2018.66.1.027
  7. Large deflection analysis of a fiber reinforced composite beam vol.27, pp.5, 2014, https://doi.org/10.12989/scs.2018.27.5.567
  8. Thermal post-buckling analysis of a laminated composite beam vol.67, pp.4, 2018, https://doi.org/10.12989/sem.2018.67.4.337
  9. Hygrothermal Post-Buckling Analysis of Laminated Composite Beams vol.11, pp.1, 2014, https://doi.org/10.1142/s1758825119500091
  10. Free vibration analysis of cracked functionally graded non-uniform beams vol.7, pp.1, 2014, https://doi.org/10.1088/2053-1591/ab6ad1
  11. Experimental evaluation on comparative mechanical properties of Jute - Flax fibre Reinforced composite structures vol.74, pp.4, 2014, https://doi.org/10.12989/sem.2020.74.4.515