DOI QR코드

DOI QR Code

Preparation of PVC-LMO Beads Using Dimethyl Sulfoxide Solvent and Adsorption Characteristics of Lithium Ions

다이메틸설폭시화물 용매를 사용한 PVC-LMO 비드의 제조와 리튬 이온 흡착 특성

  • You, Hae-Na (Department of Chemical Engineering, Pukyong National University) ;
  • Lee, Dong-Hwan (Department of Chemistry, Dong Eui University) ;
  • Lee, Min-Gyu (Department of Chemical Engineering, Pukyong National University)
  • Received : 2014.02.20
  • Accepted : 2014.04.08
  • Published : 2014.06.30

Abstract

In this study, PVC-LMO beads were prepared by immobilizing lithium manganese oxide (LMO) with poly vinyl chloride (PVC) diluted in dimethyl sulfoxide (DMSO) solvent on behalf of N-methyl-2-pyrrolidone (NMP). XRD analysis confirmed that LMO was immobilized well in PVC-LMO beads. The diameter of PVC-LMO beads synthesized by DMSO was about 4 mm. The adsorption experiments of lithium ions by PVC-LMO beads were conducted batchwise. The maximum adsorption capacity obtained from Langmuir model was 21.31 mg/g. The adsorption characteristics of lithium ions by PVC-LMO beads was well described by the pseudo-second-order kinetic model. It was considered that the internal diffusion was the rate controlling step.

본 연구에서는 노말 메틸 피로리돈(N-methyl-2-pyrrolidone, NMP)을 대신하여 다이메틸설폭시화물(dimethyl sulfoxide, DMSO)을 용매로 사용하여 폴리염화비닐 (poly vinyl chloride, PVC)로 리튬망간산화물(lithium manganese oxide, LMO)를 고정화하여 PVC-LMO 비드를 제조하였다. XRD 분석을 통해 PVC-LMO 비드내에 LMO가 잘 고정화 된 것을 확인 하였다. 합성한 PVC-LMO 비드의 크기는 약 4 mm였다. PVC-LMO 비드에 의한 리튬이온 흡착 실험은 회분식으로 수행하였다. 랭뮤어 모델식으로 부터 구한 최대 흡착량은 21.31 mg/g였다. PVC-LMO 비드에 의한 리튬이온 흡착특성은 유사 2차 속도모델식으로 잘 설명되었으며, 내부확산 단계가 흡착속도 결정단계인 것으로 사료되었다.

Keywords

References

  1. Chitrakar, R., Kanoh, H., Miyai, Y., and Ooi, K., "Recovert of Lithium from Seawater Using Manganese Oxide Adsorbent $(H_{1.6}Mn_{1.6}_{4}O)$ derived from $Li_{1.6}Mn_{1.6}O_{4}$," Ind. Eng. Chem. Res., 40, 2054-2058 (2001). https://doi.org/10.1021/ie000911h
  2. Xia, Y., Friese, J. I., Bachelor, P. P., Moore, D. A., and Rao, L., "Thermodynamics of Neptunium(V) Complexes with Phosphate at Elevated Temperatures," J. Radioanal. Nucl. Chem., 280, 599-605 (2009). https://doi.org/10.1007/s10967-009-7476-8
  3. Kim, Y. S., In, G., and Choi, J. M., "Chemical Equilibrium and Synergism for Solvent Extraction of Trace Lithium with Thenoyltrifluoroacetone in The Presence of Trioctylphosphine Oxide," Kor. Chem. Soc., 24, 1490-1500 (2003). https://doi.org/10.5012/bkcs.2003.24.10.1490
  4. Zhang, Q. H., Sun, S., Li, S., Jiang, H., and Yu, J. G., "Adsorption of Lithium Ions on Novel Nanocrystal $MnO_2$," Chem. Eng. Sci., 62, 4869-4874 (2007). https://doi.org/10.1016/j.ces.2007.01.016
  5. Wang, L., Ma, W., Liu, R., Hai, Y. Li., and Meng, C. G., "Correlation between $Li^{+}$ Adsorption Capacity and the Preparation Conditions of Spinel Lithium Manganese Precursor," Solid State Ion., 177, 1421-1428 (2006). https://doi.org/10.1016/j.ssi.2006.07.019
  6. Yang, W. W., Luo, G. S., and Gong, X. C., "Extraction and Separation of Metal Ions by a Column Packed with Polystyrene Microcapsules Containing Aliquat 336," Sep. Purif. Technol., 43, 175-182 (2005). https://doi.org/10.1016/j.seppur.2004.08.007
  7. Huang, G., Shi, J. X., and Langrish, T. A. G., "Removal of Cr(VI) from Aqueous Solution Using Activated Carbon Modified with Nitric Acid," Chem. Eng. J., 152, 434-439 (2009). https://doi.org/10.1016/j.cej.2009.05.003
  8. Seron, A., Benaddi, H,. Beguin, F., Frackowiak, E., Bretelle, J. L., Thiry, M. C., Bandosz, T. J., Jagiello, J., and Schwarz, J. A., "Sorption and Desorption of Lithium Ions from Activated Carbons," Carbon, 34, 481-487 (1996). https://doi.org/10.1016/0008-6223(95)00200-6
  9. Park, J. M., Kam, S. K., and Lee M. G., "Adsorption Characteristics of Lithium Ion by Zeolite Modified in K^{+}$, Na^{+}$, $Mg^{2+}$, $Ca^{2+}$, and $Al^{3+}$ Forms (in Korean)," J. Environ. Sci. Int., 22, 1651-1660 (2013). https://doi.org/10.5322/JESI.2013.22.12.1651
  10. Pan, B., Zhang, Q., Du, W., Zhang, W., Pan, B., Zhang, Q., Xu, Z., and Zhang, Q. "Selective Heavy Metals Removal from Waters by Amorphous Zirconium Phosphate: Behavior and Mechanism," Water Res,, 41, 3103-3111 (2007). https://doi.org/10.1016/j.watres.2007.03.004
  11. Pena, M. E., Korfiatis, G. P., Patel, M., Lippincott, L., and Meng, X., "Adsorption of As (V) and As (III) by Nanocrystalline Titanium Dioxide," Water Res., 39, 2327-2337 (2005). https://doi.org/10.1016/j.watres.2005.04.006
  12. Ma, L. W., Chen, B. Z., Chen, Y., and Shi, X. C., "Preparation, Characterization and Adsorptive Properties of Foam-type Lithium Adsorbent," Micro. Meso. Mater., 142, 147-153 (2011). https://doi.org/10.1016/j.micromeso.2010.11.028
  13. You, H. N., Lee, D. H., and Lee, M. G, "Synthesis of Lithium Manganese Oxide by Wet Mixing and Removal Characteristic of Lithium Ion (in Korean)," Clean Technol., 19, 446-452 (2013). https://doi.org/10.7464/ksct.2013.19.4.446
  14. Han, Y. S., Kim, H. J., and Park J. K., "Millimeter-sized Spherical Ion-sieve Foams with Hierarchical Pore Structure for Recovery of Lithium from Seawater," Chem. Eng. J., 210, 482-489 (2012). https://doi.org/10.1016/j.cej.2012.09.019
  15. Kitajou, A., Suzuki, T., Nishihama, S., and Yoshizuka, K. "Selective Recovery of Lithium from Seawater Using a Novel $MnO_2$ Type Adsorbent. II-Enhancement of Lithium Ion Selectivity of the Adsorbent," Ars. Sep. Acta, 2, 97-106 (2003).
  16. Umeno, A., Miyai, Y., Takagi, N., Chitrakar, R., Sakane, K., and Ooi, K., "Preparation and Adsorptive Properties of Membrane-type Adsorbents for Lithium Recovery from Seawater," Ind. Eng. Chem. Res., 41, 4281-4287 (2002). https://doi.org/10.1021/ie010847j
  17. Xiao, G., Tong, K., Zhou, L., Xiao, J., Sun, S., Li, P., and Yu, J., "Adsorption and Desorption Behavior of Lithium Ion in Spherical PVC-$MnO_2$ Ion Sieve," Ind. Eng. Chem. Res., 51, 10921-10929 (2012). https://doi.org/10.1021/ie300087s
  18. Xu, J., and Xu, Z. L., "Poly (vinyl chloride) (PVC) Hollow Fiber Ultrafiltration Membranes Prepared from PVC/Additives/ Solvent," J. Membr. Sci., 208, 203-212 (2002). https://doi.org/10.1016/S0376-7388(02)00261-2
  19. Science Lab, http://www.sciencelab.com/msds.php?msdsId=9923813.
  20. Science Lab, http://www.sciencelab.com/msds.php?msdsId=9926094
  21. Subramania, A., Angayarkanni, N., and Vasudevan, T., "Effect of PVA with Various Combustion Fuels in Sol-gel Thermolysis Process for the Synthesis of $LiMn_2O_4$ Nanoparticles for Li-ion Batteries," Mater. Chem. Phys., 102, 19-23 (2007). https://doi.org/10.1016/j.matchemphys.2006.10.004
  22. Lee, M. G., Kam, S. K., and Suh, K. H., "Adsorption of Nondegradable Eosin Y by Activated Carbon (in Korean)," J. Environ. Sci., 21, 623-631 (2012). https://doi.org/10.5322/JES.2012.21.5.623
  23. Hamdaoui, O., "Batch Study of Liquid Phase Adsorption of Methylene Blue Using Cedar Sawdust And Crushed Brick," J. Hazard. Mater., 135, 264-273 (2006). https://doi.org/10.1016/j.jhazmat.2005.11.062

Cited by

  1. Adsorption Characteristics of Lithium Ions from Aqueous Solution using a Novel Adsorbent SAN-LMO Beads vol.24, pp.5, 2015, https://doi.org/10.5322/JESI.2015.24.5.641