DOI QR코드

DOI QR Code

Community Changes of Ectomycorrhizal Fungi by Thinning in a Forest of Korea

간벌처리에 따른 외생균근균의 군집 변화

  • Choi, Jae-Wook (Department of Biology Education, Korea National University of Education) ;
  • Lee, Eun-Hwa (Department of Biology Education, Korea National University of Education) ;
  • Eo, Ju-Kyeong (Department of Biology Education, Korea National University of Education) ;
  • Koo, Chang-Duck (Department of Forest Science, Chungbuk University) ;
  • Eom, Ahn-Heum (Department of Biology Education, Korea National University of Education)
  • 최재욱 (한국교원대학교 생물교육과) ;
  • 이은화 (한국교원대학교 생물교육과) ;
  • 어주경 (한국교원대학교 생물교육과) ;
  • 구창덕 (충북대학교 산림학과) ;
  • 엄안흠 (한국교원대학교 생물교육과)
  • Received : 2014.06.12
  • Accepted : 2014.06.24
  • Published : 2014.06.30

Abstract

This study was conducted to investigate the effect of thinning on ectomycorrhizal fungal communities in a forest. Ectomycorrhizal root tips were collected from forest soils in thinning and non-thinning sites and identified using morphological characteristics and molecular analysis of ITS rDNA sequences. As a result, species richness of ectomycorrhizal fungi was significantly increased and ectomycorrhizal fungal community composition was changed by thinning. These results suggest that forest management such as thinning, could be an important factor affecting mutualistic relationships and belowground microorganisms in forest ecosystems.

본 연구에서는 간벌 처리에 따른 외생균근균의 군집 구조의 변화를 확인하기 위해 간벌지와 비간벌지에서 정량적으로 토양을 채취하여 간벌에 따른 외생균근균의 종 다양성, 종 수, 외생균근 수, 군집 내 종 구성을 비교하였다. 분석 결과 간벌지와 비간벌지는 공통적으로 Russula 속이 우점하고 있으나, 간벌 처리 후 산림 토양의 외생균근균 군집의 종 구성이 달라지고 종 수가 증가되는 것을 확인하였다. 본 연구결과는 간벌이 산림 생태계의 지상부 뿐만 아니라 외생균근균과 같은 토양속의 미생물의 군집 구조에도 유의미한 영향을 미치는 중요한 요인이라는 것을 보여주고 있다.

Keywords

References

  1. Smith SE, Read DJ. Mycorrhizal symbiosis. 3rd ed. New York: Academic Press; 2010.
  2. Alexopoulos C, Mims C, Blackwell M. Introductory mycology. 4th ed. New York: John Wiley & Sons; 1996.
  3. Agerer R. Colour atlas of ectomycorrhizae: Schwabish, Germany. Einhorn-Verlag Eduard Dietenberger; 1997.
  4. Goodman D, Durall D, Trofymow T, Berch S. A manual of concise descriptions of North American ectomycorrhizae. Mycorrhiza 1998;8:57-9. https://doi.org/10.1007/s005720050212
  5. Simard SW, Durall DM. Mycorrhizal networks: a review of their extent, function, and importance. Can J Bot 2004;82: 1140-65. https://doi.org/10.1139/b04-116
  6. Gehring CA, Whitham TG. Comparisons of ectomycorrhizae on pinyon pines (Pinus edulis; Pinaceae) across extremes of soil type and herbivory. Am J Bot 1994:1509-16.
  7. Goodman D, Trofymow J. Comparison of communities of ectomycorrhizal fungi in old-growth and mature stands of Douglas-fir at two sites on southern Vancouver Island. Can J For Res 1998;28:574-81. https://doi.org/10.1139/x98-026
  8. Ishida TA, Nara K, Hogetsu T. Host effects on ectomycorrhizal fungal communities: insight from eight host species in mixed conifer-broadleaf forests. New Phytol 2007;174:430-40. https://doi.org/10.1111/j.1469-8137.2007.02016.x
  9. Ohenoja E. Effect of weather conditions on the larger fungi at different forest sites in northern Finland in 1967-1988 [dissertation]: University of Oulu; 1993.
  10. Kranabetter J, Wylie T. Ectomycorrhizal community structure across forest openings on naturally regenerated western hemlock seedlings. Can J Bot 1998;76:189-96.
  11. Lee EH, Eom AH. Ectomycorrhizal fungal communities of red pine (Pinus densiflora) seedlings in disturbed sites and undisturbed old forest sites. Mycobiology 2013;41:77-81. https://doi.org/10.5941/MYCO.2013.41.2.77
  12. Gardes M, Bruns TD. ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol Ecol 1993;2:113-8. https://doi.org/10.1111/j.1365-294X.1993.tb00005.x
  13. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4: 406-25.
  14. Kernaghan G, Currah R, Bayer R. Russulaceous ectomycorrhizae of Abies lasiocarpa and Picea engelmannii. Can J Bot 1997;75:1843-50. https://doi.org/10.1139/b97-896
  15. Norvell LL, Exeter RL. Ectomycorrhizal epigeous basidiomycete diversity in Oregon Coast Range Pseudotsuga menziesii forests-preliminary observations. Memoirs-New York Botanical Garden 2004;89:159-90.
  16. Waters JR, McKelvey KS, Zabel CJ, Oliver WW. The effects of thinning and broadcast burning on sporocarp production of hypogeous fungi. Can J For Res 1994;24:1516-22. https://doi.org/10.1139/x94-196
  17. Meyer MD, North MP, Kelt DA. Short-term effects of fire and forest thinning on truffle abundance and consumption by Neotamias speciosus in the Sierra Nevada of California. Can J For Res 2005;35:1061-70. https://doi.org/10.1139/x05-032
  18. Colgan III W, Carey AB, Trappe JM, Molina R, Thysell D. Diversity and productivity of hypogeous fungal sporocarps in a variably thinned Douglas-fir forest. Can J For Res 1999;29: 1259-68. https://doi.org/10.1139/x99-082

Cited by

  1. The Effect on the Forest Temperature by Reduced Biomass Caused by Natural Forest Thinning vol.32, pp.3, 2018, https://doi.org/10.13047/KJEE.2018.32.3.303