DOI QR코드

DOI QR Code

Analysis of Stormwater Runoff Characteristics for Spatial Distribution of LID Element Techniques using SWMM

SWMM 모형을 이용한 LID 요소기술의 공간적 분포에 따른 우수유출특성 분석

  • Yeon, Jong Sang (Department of Civil Engineering, Sunmoon University) ;
  • Jang, Young Su (Department of Civil & Environmental Engineering, Pusan National University) ;
  • Lee, Jae Hyuk (Department of Civil & Environmental Engineering, Pusan National University) ;
  • Shin, Hyun Suk (Department of Civil & Environmental Engineering, Pusan National University) ;
  • Kim, Eung Seok (Department of Civil Engineering, Sunmoon University)
  • 연종상 (선문대학교 토목공학과) ;
  • 장영수 (부산대학교 사회환경시스템공학과) ;
  • 이재혁 (부산대학교 사회환경시스템공학과) ;
  • 신현석 (부산대학교 사회환경시스템공학과) ;
  • 김응석 (선문대학교 토목공학과)
  • Received : 2014.02.27
  • Accepted : 2014.06.12
  • Published : 2014.06.30

Abstract

As the storm water runoff characteristics in urban areas have changed owing to urbanization, centralized facilities to reduce the urban flood runoff had been implemented. On the other hand, because they have their limitations, LID (Low Impact Development) of the distributed facilities for storm water runoff reduction is being actively planned and applied. The purpose of this study was to analyze the runoff characteristics for the spatial distribution of typical LID element techniques. This study set a study basin consisting of the five subbasins with the same basin and drainage systems, and analyzed the flood runoff characteristics from the two scenarios, one is for the locations and the other is for the number of green roofs (GR) and permeable pavement (PP), respectively, selected as typical LID element techniques. The SWMM implementation results showed that GR reduces 11.07% of the total and 3.42% of the peak amounts of storm water runoff, and PP leads to 18.09% of the total and 17.94% of the peak discharge reduction for a subbasin. Such a reduction rate is constant regardless of the LID locations, and increases linearly with the number of LID applications. The different runoff reduction rates between the GR and PP applications appear to be due to the effects of the different hydraulic conductivities in the control parameters for each LID.

도시화로 인한 도심유역 내 강우유출양상이 개발이전과 다른 양상을 보이므로, 도심유역 내 강우유출량을 저감하기 위해 집중형 유출 저감 시설이 시행되어왔다. 그러나 시설의 한계점 때문에 분산형 유출 저감 시설인 저영향개발(Low Impact Development; LID)의 계획 및 적용이 활발하게 진행되고 있다. 본 연구에서는 대표적인 LID 요소기술을 대상으로 공간적 분포에 따른 유출특성을 분석하였다. 대상유역은 동일한 유역 및 우수배수 특성을 지닌 5개의 소유역으로 구성하였고, 대표적인 LID 요소기술로 선정된 옥상녹화와 투수성 포장의 적용위치 및 개수에 따른 2개의 시나리오에 대한 유출특성을 분석하였다. SWMM 모형적용 결과, 적용 소유역 1개당 옥상녹화의 경우 총 유출량은 11.07%, 첨두 유출량은 3.42% 저감되었으며, 투수성포장의 경우 총 유출량은 18.09%, 첨두 유출량은 17.94% 저감되었다. 이와 같은 감소율은 적용 LID의 위치에 상관없이 일정하였고, 적용 LID의 개수에 따라 정비례하게 증가하였다. 옥상녹화와 투수성 포장에서 유출특성 저감률의 발생 차이는 각 방법의 매개변수인 수리전도도의 영향 때문인 것으로 판단된다.

Keywords

References

  1. National Institute of Environmental Research. The Study of Development Projects and The best Nonpoint Source management practices in Workplace to Pollution Load Management, pp1-306, 2009
  2. C. Enyoung, The Analysis of LID Adaptation Efficiency on Urban Basin based on SWMM-LID Model, pp.1-102, Pusan National University, Department of Civil and Environmental Engineering, 2012
  3. P. Junho, Y. Yonggu, P. Youngkon, Y. Heetaek, K. Jonggun, P. Younshik, J. Ji-Hong, L. Kyoung Jea, "Analysis of Runoff Reduction With LID Adoption using the SWMM, Journal of Korean Society on Water Quality, Vol. 24, No. 6, pp.806-816, 2008
  4. K. Junhee, P. Inhyeok, H. Sungryoung, "The Analysis of Runoff Characteristics by Alterations of SCS-CN Value using LID Method", Journal of Environmental Impact Assessment, Vol. 19, No. 1, pp.49-57, 2010
  5. S. Dongsoo, P. Jeabeom, K. Dookee, J. Deokjun, An Analysis of Runoff Mitigation Effect Using SWMM-LID Model for Frequently Inundated Basin, Vol. 13, No. 4, pp. 303-309, 2013 https://doi.org/10.9798/KOSHAM.2013.13.4.303
  6. L. Yongkyun, A Study of LID Technologies for Friendly Environmental Urban Development, pp.258, Pusan National University, Department of Civil and Environmental Engineering, 2010
  7. H. Curtis, W. Bruce, Low Impact Development Technical Guidance Manual for Puget Sound, pp.1-304 ,Washington Stats University Extension, Puget Sound Partnership Leadig Puget Sound Recovery, USA, 2012
  8. L. A. Rossman, Storm Water Management Model User's Manual Version 5.0, pp.1-285, EPA, 2010
  9. Korea Water Resource Corporation, The Stufy of Optimal LID Technology for Hydrophilic Space, pp.1-189, 2012
  10. J. Deokjun, L. Naeun, J. Byeonghoon, K. Dookee, "A Determination of the Acceptable Design Extreme Rainfall for the Improvement of Flood Disaster Prevention Ability, Korean Society of Hazard Mitigation, Vol. 12, No. 3, pp. 307-311, 2012 DOI: http://dx.doi.org/10.9798/KOSHAM.2012.12.3.307

Cited by

  1. Analyzing the Effects and Costs of Flood Protection Measures at the Urban Catchment Scale vol.15, pp.4, 2015, https://doi.org/10.9798/KOSHAM.2015.15.4.31
  2. Analysis on Appropriate Plants of Infiltration Swale for Road Runoff vol.19, pp.5, 2016, https://doi.org/10.13087/kosert.2016.19.5.19