DOI QR코드

DOI QR Code

Drought Assessments Using Satellite-based Drought Index in Korea; Southern Region Case in 2013

인공위성 가뭄지수를 활용한 한반도 가뭄 평가; 2013년 남부지방 가뭄을 대상으로

  • Sur, Chanyang (Department of Civil and Environmental Engineering, Hanyang University) ;
  • Kim, Kyungjun (Disaster Prevention Research Division, National Disaster Management Institute) ;
  • Choi, Woojung (Disaster Prevention Research Division, National Disaster Management Institute) ;
  • Shim, Jaehyun (Disaster Prevention Research Division, National Disaster Management Institute) ;
  • Choi, Minha (Dept. of Water Resources, Graduate School of Water Resources, Sungkyunkwan University)
  • 서찬양 (한양대학교 건설환경공학과) ;
  • 김경준 (국립재난안전연구원 방재연구실) ;
  • 최우정 (국립재난안전연구원 방재연구실) ;
  • 심재현 (국립재난안전연구원 방재연구실) ;
  • 최민하 (성균관대학교 수자원대학원 수자원학과)
  • Received : 2014.04.15
  • Accepted : 2014.06.09
  • Published : 2014.06.30

Abstract

The objective of this study is to derive and evaluate the drought index by using satellite data. The satellite-based drought index was spatially assessed at Southern part of Korean peninsula in 2013. We estimated hydrometeorological parameter-based drought index (Evaporative Stress Index, ESI) by using various products of multispectral sensor, MODerate resoultion Imaging Spectroradiometer (MODIS). The ESI analyzed other spatial distribution of drought indices provided by drought information system from related organizations. Regional capability of ESI through time series analysis compared with PDSI(Palmer Drought Severity Index) and SPI(Standardized Precipitation Index) was assessed. Based on the results in this study, it can be concluded that the derived ESI showed better regional capability than the other drought indices.

본 연구의 목적은 인공위성 자료를 활용한 가뭄지수를 산정하고 이를 통해 2013년 발생한 남부지방의 가뭄을 평가하는데 있다. 다중분광센서인 MODerate resolution Imaging Spectroradiometer(MODIS) 센서의 다양한 산출물을 통해 수문기상인자 기반의 가뭄지수(Evaporative Stress Index, ESI)를 산정하고 이를 유관기관의 가뭄 정보 시스템의 가뭄 모니터링 결과와 비교 분석하였다. 또한 국내에서 널리 이용되고 있는 PDSI(Palmer Drought Severity Index), SPI(Standardized Precipitation Index)와 ESI의 시계열 분석을 통해 ESI의 국내 적용성을 판단하고자 하였다. 각 가뭄지수들의 시공간 비교를 통해 ESI의 국내 적용성이 높음을 확인할 수 있다.

Keywords

Acknowledgement

Grant : 재난위험도 평가 및 대응 기반기술 구축(I)

Supported by : 국립재난안전연구원

References

  1. Anderson, M.C., Norman, J.M., Mecikalski, J.R., Otkin, J.A., and Kustas, W.P. (2007) "A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 1. Model formulation", Journal of Geophysical Research, Vol. 112, D10117. https://doi.org/10.1029/2006JD007506
  2. Anderson, M.C., Hain, C., Wardlow, B., Pimstein, A., Mecikalski, J.R., and Kustas, W.P. (2011) "Evaluation of Drought Indices Based on Thermal Remote Sensing of Evapotranspiration over the Continental United States", Journal of Climate, Vol. 24, pp. 2025-2044. https://doi.org/10.1175/2010JCLI3812.1
  3. Anderson, M.C., Hain, C., Otkin, J.A., Zhan, X., Mo, K., Svoboda, M., Wardlow, B., and Pimstein, A. (2011) "An intercomparison of drought indicators based on thermal remote sensing and NLDAS-2 simulations with U.S. drought monitor classfications", Journal of Hydrometeorlogy, Vol. 14, pp. 1035-1056.
  4. Choi, M., Jacobs, J.M., Anderson, M.C., and Bosch, D.D. (2013) "Evaluation of drought indices via remotely sensed data with hydrological variables", Journal of Hydrology, Vol. 476, pp. 265-273. https://doi.org/10.1016/j.jhydrol.2012.10.042
  5. Du Pisani, C.G., Fouche, H.J., and Venter, J.C. (1998) "Assessing rangeland drought in South Africa", Agricultural Systems, Vol. 57, pp. 367-380. https://doi.org/10.1016/S0308-521X(98)00024-9
  6. Dubrovsky, M., Svoboda, M.D., Trnka, M., Hayes, M.J., Wilhite, D. A., Zalud, Z., and Hlavinka, P. (2008) "Application of relative drought indices in assessing climate change impacts on drought conditions in Czechi", Theoretical and Applied Climatology, Vol. 96, No. 1, pp. 55-171.
  7. Heim, R.R. (2002) "A review of twentieth-century drought indices used in the United States", Bulletin of the American Meteorological Society, Vol. 83, pp. 1149-1165. https://doi.org/10.1175/1520-0477(2002)083<1149:AROTDI>2.3.CO;2
  8. IPCC (2007) Climate Change 2007: The physical science basis, Contribution of Working Group I to the Fourth Assessment, in S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller (Eds.), Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996.
  9. Keyantash, J. and Dracup, J. (2002) "The quantification of drought: An evaluation of drought indices", Bulletin of the American Meteorological Society, Vol. 83, pp. 1167-1180. https://doi.org/10.1175/1520-0477(2002)083<1191:TQODAE>2.3.CO;2
  10. McKee, T.B., Doeskin, N.J., and Kleist, J. (1993) "The relationship of drought frequency and duration to time scales", Proc. 8th Conf. on Applied Climatology, January 17-22, 1993, American Meteorological Society, Boston, Massachusetts, pp. 179-184.
  11. Palmer, W.C. (1965) Meteorological drought, Research paper No.45, U.S. Weather Bureau.
  12. Sheffield, J. and Wood, E.F. (2008) "Projected changes in drought occurrence under future global warming from multi-model", multi-scenario, IPCC AR4 simulation, Climate Dynamics, Vol. 31, pp. 79-105. https://doi.org/10.1007/s00382-007-0340-z