DOI QR코드

DOI QR Code

On the FE Modeling of FRP-Retrofitted Beam-Column Subassemblies

  • Ronagh, H.R. (School of Civil Engineering, The University of Queensland) ;
  • Baji, H. (School of Civil Engineering, The University of Queensland)
  • Received : 2013.02.13
  • Accepted : 2013.07.23
  • Published : 2014.06.30

Abstract

The use of fiber reinforced polymer (FRP) composites in strengthening reinforced concrete beam-column subassemblies has been scrutinised both experimentally and numerically in recent years. While a multitude of numerical models are available, and many match the experimental results reasonably well, there are not many studies that have looked at the efficiency of different finite elements in a comparative way in order to clearly identify the best practice when it comes to modelling FRP for strengthening. The present study aims at investigating this within the context of FRP retrofitted reinforced concrete beam-column subassemblies. Two programs are used side by side; ANSYS and VecTor2. Results of the finite element modeling using these two programs are compared with a recent experimental study. Different failure and yield criteria along with different element types are implemented and a useful technique, which can reduce the number of elements considerably, is successfully employed for modeling planar structures subjected to in-plane loading in ANSYS. Comparison of the results shows that there is good agreement between ANSYS and VecTor2 results in monotonic loading. However, unlike VecTor2 program, implicit version of ANSYS program is not able to properly model the cyclic behavior of the modeled subassemblies. The paper will be useful to those who wish to study FRP strengthening applications numerically as it provides an insight into the choice of the elements and the methods of modeling to achieve desired accuracy and numerical stability, a matter not so clearly explored in the past in any of the published literature.

Keywords

References

  1. Alhaddad, M. S., Siddiqui, N. A., Abadel, A. A., Alsayed, S. H., & Al-Salloum, Y. A. (2012). Numerical investigations on the seismic behavior of FRP and TRM Upgraded RC exterior beam-column joints. Journal of Composites for Construction, 16(3), 308-321. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000265
  2. ANSYS Manual. (2012). ANSYS Inc., Canonsburg, PA.
  3. Biscaia, H. C., Chastre, C., & Silva, M. A. (2013). Nonlinear numerical analysis of the debonding failure process of FRP-to-concrete interfaces. Composites Part B Engineering, 50, 210-223. https://doi.org/10.1016/j.compositesb.2013.02.013
  4. Bohl, A., & Adebar, P. (2011). Plastic hinge lengths in high-rise concrete shear walls. ACI Structural Journal, 108(2), 148-157.
  5. Drucker, D., Prager, W., & Greenberg, H. (1952). Extended limit design theorems for continuous media. Quarterly of Applied Mathematics, 9(4), 381-389. https://doi.org/10.1090/qam/45573
  6. El-Amoury, T. A. (2004). Seismic rehabilitation of concrete frame beam-column joints. PhD Thesis, McMaster University, Ottawa, Canada, 351 pp.
  7. Ghobarah, A., & El-Amoury, T. (2005). Seismic rehabilitation of deficient exterior concrete frame joints. Journal of Composites for Construction, 9(5), 408-416. https://doi.org/10.1061/(ASCE)1090-0268(2005)9:5(408)
  8. Hawileh, R. A., Naser, M. Z., & Abdalla, J. A. (2012). Finite element simulation of reinforced concrete beams externally strengthened with short-length CFRP plates. Composites Part B Engineering, 45(1), 1722-1730.
  9. Hunley, C. T., & Harik, I. E. (2012). Structural redundancy evaluation of steel tub girder bridges. Journal of Bridge Engineering, 17(3), 481-489. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000266
  10. Kachlakev, D., Miller, T., Yim, S., Chansawat, K., & Potisuk, T. (2001). Finite element modeling of reinforced concrete structures strengthened with FRP laminates. Final Report SPR, 316, 2001.
  11. Karayannis, C. G., & Sirkelis, G. M. (2008). Strengthening and rehabilitation of RC beam-column joints using carbon-FRP jacketing and epoxy resin injection. Earthquake Engineering and Structural Dynamics, 37(5), 769-790. https://doi.org/10.1002/eqe.785
  12. Kim, S.-W., & Vecchio, F. J. (2008). Modeling of shear-critical reinforced concrete structures repaired with fiber-reinforced polymer composites. Journal of Structural Engineering, 134(8), 1288-1299. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:8(1288)
  13. Ko, M.-Y., Kim, S.-W., & Kim, J.-K. (2001). Experimental study on the plastic rotation capacity of reinforced high strength concrete beams. Materials and Structures, 34(5), 302-311. https://doi.org/10.1007/BF02482210
  14. Kralik, J. (2009). Seismic analysis of reinforced concrete frame-wall systems considering ductility effects in accordance to Eurocode. Engineering Structures, 31(12), 2865-2872. https://doi.org/10.1016/j.engstruct.2009.07.029
  15. Mahini, S. S. (2005). Rehabilitation of exterior RC beam-column joints using web-bonded FRP sheets. PhD Thesis, School of Civil Engineering, The University of Queensland, Brisbane, Australia, 343 pp.
  16. Mahini, S., & Ronagh, H. (2009). Numerical modelling of FRP strengthened RC beam-column joints. Structural Engineering and Mechanics, 32(5), 649-665. https://doi.org/10.12989/sem.2009.32.5.649
  17. Mahini, S. S., & Ronagh, H. R. (2011). Web-bonded FRPs for relocation of plastic hinges away from the column face in exteriorRCjoints. Composite Structures, 93(10), 2460-2472. https://doi.org/10.1016/j.compstruct.2011.04.002
  18. Mirmiran, A., Zagers, K., & Yuan, W. (2000). Nonlinear finite element modeling of concrete confined by fiber composites. Finite Elements in Analysis and Design, 35(1), 79-96. https://doi.org/10.1016/S0168-874X(99)00056-6
  19. Palermo, D., & Vecchio, F. J. (2003). Compression field modeling of reinforced concrete subjected to reversed loading: formulation. ACI Structural Journal, 100(5), 616-625.
  20. Pantelides, C. P., Okahashi, Y., & Reaveley, L. (2008). Seismic rehabilitation of reinforced concrete frame interior beam- column joints with FRP composites. Journal of Composites for Construction, 12(4), 435-445. https://doi.org/10.1061/(ASCE)1090-0268(2008)12:4(435)
  21. Parvin, A., & Granata, P. (2000). Investigation on the effects of fiber composites at concrete joints. Composites Part B Engineering, 31(6), 499-509. https://doi.org/10.1016/S1359-8368(99)00046-3
  22. Richart, F. E., Brandtzæg, A., & Brown, R. L. (1929). Failure of plain and spirally reinforced concrete in compression. Normal, IL: Illinois State University.
  23. Rochette, P., & Labossiere, P. (1996). A plasticity approach for concrete columns confined with composite materials. In Second International Conference on Advanced Composite Materials in Bridges and Structures, Montreal.
  24. Sagbas, G. (2007). Nonlinear finite element analysis of beam- column subassemblies. Master of Applied Science, Department of Civil Engineering, University of Toronto, Toronto, Canada, 182 pp.
  25. Sagbas, G., Vecchio, F., & Christopoulos, C. (2011). Computational modeling of the seismic performance of beam- column subassemblies. Journal of Earthquake Engineering, 15(4), 640-663. https://doi.org/10.1080/13632469.2010.508963
  26. Seckin, M. (1981). Hysteretic behaviour of cast-in-place exterior beam-column-slab subassemblies. PhD thesis, Department of Civil Engineering, University of Toronto, Toronto, Canada, 1981, 266 pp.
  27. Shahawy, M., Mirmiran, A., & Beitelman, T. (2000). Tests and modeling of carbon-wrapped concrete columns. Composites Part B Engineering, 31(6), 471-480. https://doi.org/10.1016/S1359-8368(00)00021-4
  28. Shrestha, R., Smith, S. T., & Samali, B. (2013). Finite element modelling of FRP-strengthened RC beam-column connections with ANSYS. Computers and Concrete: An International Journal, 11(1), 1-20. https://doi.org/10.12989/cac.2013.11.1.001
  29. Vecchio, F. (2000). Disturbed stress field model for reinforced concrete: Formulation. Journal of Structural Engineering, 126(9), 1070-1077. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:9(1070)
  30. Vecchio, F., & Bucci, F. (1999). Analysis of repaired reinforced concrete structures. Journal of Structural Engineering, 125(6), 644-652. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:6(644)
  31. Vecchio, F. J., & Collins, M. P. (1986). The modified compression- field theory for reinforced concrete elements subjected to shear. ACI Journal, 83(2), 219-231.
  32. Vecchio, F., & Shim, W. (2004). Experimental and analytical reexamination of classic concrete beam tests. Journal of Structural Engineering, 130(3), 460-469. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:3(460)
  33. William, K. J., & Warnke, E. P. (1974). Constitutive model for the triaxial behaviour of concrete. In Proceedings of the International Assoc. for Bridge and Structural Engineering. Bergamo, Italy: ISMES Press.
  34. Wong, P., & Vecchio, F. (2002). VecTor2 and FormWorks user's manual. Toronto, Canada: University of Toronto.
  35. Wong, R. S. Y., & Vecchio, F. J. (2003). Towards modeling of reinforced concrete members with externally bonded fiberreinforced polymer composites. ACI Structural Journal, 100(1), 47-55.

Cited by

  1. A parametric investigation on the hysteretic behaviour of CFT column to steel beam connections vol.55, pp.1, 2014, https://doi.org/10.12989/sem.2015.55.1.205
  2. Prediction of the Rupture of Circular Sections of Reinforced Concrete and Fiber Reinforced Concrete vol.10, pp.3, 2014, https://doi.org/10.1007/s40069-016-0137-8
  3. Experimental Cyclic Behavior of Precast Hybrid Beam-Column Connections with Welded Components vol.11, pp.2, 2014, https://doi.org/10.1007/s40069-017-0190-y
  4. Seismic Performance of Exterior RC Beam–Column Joints Retrofitted using Various Retrofit Solutions vol.11, pp.3, 2014, https://doi.org/10.1007/s40069-017-0203-x
  5. FE Modeling and Seismic Performance Evaluation of Hybrid SMA-Steel RC Beam-Column Joints vol.16, pp.5, 2014, https://doi.org/10.1590/1679-78255272
  6. Evaluation of Shear Strength of RC Beams Without Shear Reinforcement Using Modified Compression Field Theory vol.43, pp.3, 2014, https://doi.org/10.1007/s40996-018-0199-8
  7. Effects of CFRP/GFRP flexural retrofitting on reducing seismic damage of reinforced concrete frames: a comparative study vol.20, pp.8, 2014, https://doi.org/10.1007/s42107-019-00173-7
  8. Dual-Horizon Peridynamics Analysis of Debonding Failure in FRP-to-Concrete Bonded Joints vol.13, pp.1, 2019, https://doi.org/10.1186/s40069-018-0328-6
  9. Numerical Evaluation of the Steel Plate Energy Absorption Device (SPEAD) for Seismic Strengthening of RC Frame Structures vol.18, pp.8, 2014, https://doi.org/10.1007/s40999-020-00510-x
  10. Shear strength and cracking mechanism of precast bridge columns with grouted sleeve connections vol.230, pp.None, 2014, https://doi.org/10.1016/j.engstruct.2020.111616