DOI QR코드

DOI QR Code

Distribution pattern according to altitude and habitat type of the Red-tongue viper snake (Gloydius ussuriensis) in the Cheon-ma mountain

천마산에 서식하는 쇠살모사(Gloydius ussuriensis)의 고도와 서식지 타입에 따른 분포 패턴

  • Received : 2013.11.15
  • Accepted : 2014.01.09
  • Published : 2014.05.31

Abstract

The distribution of animals is affected by habitat selection, and habitat type and prey resource are important factors affecting their survival. This study was conducted to investigate the distribution pattern of the Red-tongue viper snake (Gloydius ussuriensis) with respect to altitude, habitat type and distribution of potential prey resource in Cheon-ma mountain, Korea. The study area of Cheon-ma mountain was separated into three altitude categories (low, middle, and high altitude) and the habitat types were categorized according to presence or absence of aquatic ecosystem and the preferred habitat in relation to altitude was determined. The distribution pattern of Red-tongue viper snakes was significantly different according to altitude and habitat type: they were mainly distributed at low altitude and in the water valleys. The distribution pattern of the Red-tongue viper snake correlated with that of amphibians. The analyses of microhabitat use of the Red-tongue viper snake and amphibians showed that their microhabitat types were not different significantly in water valleys. In conclusion, Red-tongue viper snakes were mainly distributed in the water valleys at low altitude and this is because amphibians are important as potential prey of the Red-tongue viper snake in Cheon-ma mountain.

동물의 분포는 서식지선택에 영향을 받으며, 서식지의 특성과 먹이자원은 종의 생존에 중요한 요인으로 작용한다. 본 연구는 천마산에 서식하는 쇠살모사(Gloydius ussuriensis)의 분포 패턴 특성을 파악하고자 고도, 서식지 특성, 잠재적 먹이자원인 양서류의 분포에 초점을 맞추어 수행되었다. 서식하는 고도범위에서 선호하는 서식지 타입을 알아보고자 고도를 3개의 범주(저고도, 중고도, 고고도)로 분류하였고, 서식지는 수생태계의 존재 유무에 따라 분류하였다. 쇠살모사의 경우, 고도와 서식지 타입에 따른 분포 모두 유의한 차이를 보였으며, 저고도와 물이 있는 계곡에서 주로 분포하였다. 양서류의 경우도 고도와 서식지에 따라 쇠살모사와 동일한 분포패턴을 보였다. 물이 있는 계곡의 쇠살모사와 양서류에 대한 미소서식지 분석결과는 유의한 차이가 없었다. 결과적으로 쇠살모사가 저고도에 위치한 물이 있는 계곡주변에서 대부분 분포하고 있었던 이유는 양서류의 분포가 그 원인으로 판단된다. 이러한 이유는 천마산에 서식하는 쇠살모사가 비교적 사냥하기 쉬운 먹이자원인 양서류를 선호했기 때문이라고 판단된다.

Keywords

References

  1. Atauri, JA and Lucio, JV (2001). The role of landscape structure in species richness distribution of birds, amphibians, reptiles and lepidopterans in Mediterranean landscapes, Landscape Ecology, 16, pp. 147-159. https://doi.org/10.1023/A:1011115921050
  2. Barbault, R (1971). Les peuplements d''ophidiens des savannes de Lamto, Cote d''Ivoire, Ann Univ Abidjan, 4, pp. 133-194.
  3. Barbault, R (1987). Pression de predation et evolution des strategies demographiques en zone tropicale: le cas des lezards et des amphibiens. Revue de zoologique africaine, 10, pp. 301-327.
  4. Berg, A (1997). Diversity and abundance of birds in relation to forest fragmentation, habitat quality and heterogeneity, Bird Study, 44, pp. 355-366. https://doi.org/10.1080/00063659709461071
  5. Blanchard, FN and Finster, EB (1933). A method of marking living snakes for future recognition, with a discussion of some problems and results, Ecological society of America, 14(4), pp. 334-347.
  6. Bilde, T and Toft, S (1998). Quantifying food limitation of arthropod predators in the field, Oecologia, 115, pp. 54-58. https://doi.org/10.1007/s004420050490
  7. Bodie, JR (2001). Stream and riparian management for freshwater turtles, J. of Environmental Management, 62, pp. 443-455. https://doi.org/10.1006/jema.2001.0454
  8. Charnov, EL (1976). Optimal foraging, the marginal value theorem, Theoretical Population Biology, 9, pp. 129-136. https://doi.org/10.1016/0040-5809(76)90040-X
  9. Christiansen, DG, Jakob, C, Arioli, M, Roethlisberger, S and Reyer, HU (2010). Coexistence of diploid and triploid hybrid water forgs: population differences persist in the apparent absence of differential survival, BioMed Central Ecology, 10, pp. 1-14. https://doi.org/10.1186/1471-244X-10-1
  10. Fortin, D, Fryxell, JM, O'Brodovich, L and Frandsen, D (2003). Foraging ecology of bison at the landscape and plant community levels: the applicability of energy maximization principle, Oecologia, 134, pp. 219-227. https://doi.org/10.1007/s00442-002-1112-4
  11. Freiria, MF, Sillero, N, Lizana, M and Brito, JC (2008). GIS-based niche models identify environmental correlates sustaining a contact zone between three species of European vipers, Diversity and Distributions, 14, pp. 452-461. https://doi.org/10.1111/j.1472-4642.2007.00446.x
  12. Greene, HW (2001). Snakes: the evolution of mystery in nature. California Univ. Press.
  13. Gregory, PT and Isaac, LA (2004). Food habitat of the grass snake in southeastern England: Is Natrix natrix a Generalist Predator?, J. of herpetology, 38(1), pp.88-95. https://doi.org/10.1670/87-03A
  14. Gibbons, JW, Coker, JW and Murphy TM (1977). Selected aspects of the life history of the rainbow snake (Farancia erytrogamma), Herpetologica, 33, pp. 276-281.
  15. Glaudas, X and Robles, JAR (2011). A two-level problem: habitat selection in relation to prey abundance in an ambush predator, the speckled rattlesnake (Crotalus mitchellii), Behaviour, 148, pp. 1491-1524. https://doi.org/10.1163/156853912X623739
  16. Harlan, JR (1976). Plant and animal distribution in relation to domestication, Philosophical Transactions of the Royal Society Biological Sciences, 273, pp. 13-25.
  17. Heard, GW, Black, D and Robertson, P (2004). Habitat use by the inland carpet pyton (Morelia spilota metcalfei : Pytonidae): Seasonal relationships with habitat structure and prey distribution in a rural landscape, Austral Ecology, 29, pp. 446-460. https://doi.org/10.1111/j.1442-9993.2004.01383.x
  18. Herczeg, G, Gonda, A, Perala, J, Saarikivi, J, Tuomola, A and Merila, J (2007). Ontogenetic differences in the preferred body temperature of the European adder Vipera berus, Herpetological Journal, 17, pp. 58-61.
  19. Karanth, KU, Nichols, JD, Sambakumar, N, Link, WA, Hines, JE (2004). Tigers and their prey: predicting carnivore densities from prey abundance, Proceedings of the National Academy of Sciences USA, 101, pp. 4854-4858. https://doi.org/10.1073/pnas.0306210101
  20. Kim, JY (2007). Development of the community planting models for the urban green space in the metropolitan area, the middle temperate zones Korea, D. Eng. thesis. The University of Seoul, Seoul. 91-93pp. [Korean Literature]
  21. Kim, BS (2010). A study on the ecology of the Ussuri mamushi Gloydius ussuriensis from Jeju island, Korea, Ph. D. thesis. Jeju national university. pp. 40-49. [Korean Literature]
  22. Klug, PE, Jackrel, SL and With, KA (2010). Linking snake habitat use to nest predation risk in grassland bird: the dangers of shrub cover, Oecologia, 162, pp. 803-813. https://doi.org/10.1007/s00442-009-1549-9
  23. Kofron, CP (1978). Food and habitats of aquatic snake (Reptilia, Serpentes) in a Louisiana swamp, J. of Herpetology, 12(4), pp. 543-554. https://doi.org/10.2307/1563360
  24. Lee, KJ, Lee, SD and Hong, SH (2002). Forest Ecosystems of Choenmasan County Park, J. of ecology and field biology. 2002(1): 65-69. [Korean Literature]
  25. Lee, SD (2009). Ecological studies of fauna in and around do-rim urban streams, J. of Wetlands Research. 11(3), pp. 105-113. [Korean Literature]
  26. Leyequien, E, Verrelst, J, Slot, M, Strub, GS, Heitkonig, IMA and Skidmore, A (2007). Capturing the fugitive: Applying remote sensing to terrestrial animal distribution and diversity, International Journal of Applied Earth Observation and Geoinformation, 9, pp. 1-20. https://doi.org/10.1016/j.jag.2006.08.002
  27. Lind, AJ and Welsh, HH (1994). Ontogenetic changes in foraging behavior and habitat use by the Oregon garter snake, Thamnophis atratus hydrophilus, Animal Behaviour, 48, pp. 1261-1273.
  28. Luiselli, L (2006). Resource partitioning and interspecific competition in snakes: the search for general geographical and guild patterns, Oikos, 114, pp. 193-211. https://doi.org/10.1111/j.2006.0030-1299.14064.x
  29. Luiselli, L, Filppi, E and Lena, ED (2007). Ecological Relationship between Sympatric Vipera aspis and Vipera ursinii in High-Altitude Habitats of Central Italy, J. of Herpetology, 41(3), pp. 378-384. https://doi.org/10.1670/0022-1511(2007)41[378:ERBSVA]2.0.CO;2
  30. Madison, DM (1997). The emigration of radio-implanted spotted salamanders, Ambystoma maculatum, J. of Herpetology, 31, pp. 542-552. https://doi.org/10.2307/1565607
  31. Mattison, C (1995). The encyclopedia of snake, Blandford, London, UK. pp. 70-93.
  32. Orians, GH and Wittenberger, JF (1991). Spatial and temporal scales in habitat selection, The American Naturalist, 137, pp. 29-49. https://doi.org/10.1086/285138
  33. Pough, FH, Andrews, RM, Cadle, JE, Crump, ML, Savitzky, AH and Wells, DK (2004). Herpetology. 3rded.PrenticeHall,pp.1-726.
  34. Pough, HF (2007). Amphibian biology and husbandry, Laboratory Animal Research Journal, 48(3), pp. 203-213.
  35. Reinert, HK (1984). Habitat separation between sympatric snake populations, Ecological society of America, 65(2), pp. 478-486.
  36. Richter, S, Young JE, Seigel, RA and Johnson, GN (2001). Postbreeding movement of the dark gopher frog, Rana sevosa Goin and Netting: implications for conservation and management, J. of Herpetology, 35, pp. 316-321. https://doi.org/10.2307/1566123
  37. Santos, X, Brito, JC, Sillero, N, Pleguezuelos, jM, Llorente, GA, Fahd, S and Parellada, X (2006). Inferring habitat-suitability areas with ecological modelling techniques and GIS: A contribution to assess the conservation status of Vipera latastei, Biology conservation, 130, pp. 416-425. https://doi.org/10.1016/j.biocon.2006.01.003
  38. Scali, S, Mangiacotti, M, Sacchi, R and Gentilli, A (2011). A Tribute to hubert Saint Girons: niche separation between Vipera aspis and V. berus on the basis of distribution models, Amphibian-Reptile, 32, pp. 223-233. https://doi.org/10.1163/017353711X562171
  39. Sinsch, U (1990). Migration and orientation in anuran amphibians, Ethology Ecology and Evolution, 2, pp. 65-79. https://doi.org/10.1080/08927014.1990.9525494
  40. Semlitsch, RD (1998). Biological delineation of terrestrial buffer zones for pond-breeding salamanders, Conservation Biology, 12, pp. 1113-1119. https://doi.org/10.1046/j.1523-1739.1998.97274.x
  41. Semlitsch, RD and Bodie, JR (2003). Biological criteria for buffer zones around wetlands and riparian habitats for amphibians and reptiles, Conservation Biology, 17(5), pp. 1219-1228. https://doi.org/10.1046/j.1523-1739.2003.02177.x
  42. Shim, JH, Son, YJ, Lee, SS, Pack, KS, Oh, HB and Pack, YD (1998). Ecology study on poisonous snake and investigation of the venom characteristics, snake biting frequency in Korea, J. of ecology and field biology, 1998(1), pp. 58-77. [Korean Literature]
  43. Stamps, JA (2001). Habitat selection by dispersers: integrating proximate and ultimate approaches. In Clobert, J, Danchin, E, Dhondt, AA and Nichols, JD. Dispersal. (eds.), pp. 230-242. New York: Oxford University Press.
  44. Vitt, LJ (1987). Communities. In: Seigel, RA, Collins, JS and Novak, SS (eds.), Snakes: ecology and evolutionary biology, MacMillan, pp. 335-365.
  45. Wasko DK and Sasa M (2012). Food resource influence spatial ecology, habitat selection,and foraging behavior in an ambush-hunting snake (Viperidae: Bothrops asper): an experimental study, Zoology, 115, pp. 179-187. https://doi.org/10.1016/j.zool.2011.10.001
  46. White, TCR (1978). The importance of a relative shortage of food in animal ecology, Oecologia, 33, pp. 71-86. https://doi.org/10.1007/BF00376997
  47. Zuffi, MAL and Bonnet, X (2009). Italian subspecies of the asp viper, Vipera aspis: Patterns of variability and distribution, Italian Journal of Zoology, 66(1), pp. 87-95.

Cited by

  1. A comparison of five Korean snake species' reproductive organ sizes, Oocatochus rufodorsatus and Rhabdophis tigrinus in Colubridae and Gloydius saxatilis, G. brevicaudus and G. ussuriensis in Viperidae vol.38, pp.4, 2015, https://doi.org/10.5141/ecoenv.2015.050
  2. Patterns of Snake Roadkills on the Roads in the National Parks of South Korea. vol.51, pp.3, 2018, https://doi.org/10.11614/KSL.2018.51.3.234