DOI QR코드

DOI QR Code

Effect of Salinity and Micronutrients on the Growth Rate of Bloom from Heterosigma akashiwo (Raphidophyceae)

염분과 미량원소가 Heterosigma akashiwo (Raphidophyceae) 성장률에 미치는 영향

  • Lee, Juyun (Marine Ecosystem Research Division, Korea Institute of Ocean Science and Technology (KIOST)) ;
  • Chang, Man (Marine Ecosystem Research Division, Korea Institute of Ocean Science and Technology (KIOST)) ;
  • Han, Myung-Soo (Department of Life Science, Hanyang University)
  • Received : 2014.02.17
  • Accepted : 2014.06.09
  • Published : 2014.06.30

Abstract

In order to understand the Heterosigma akashiwo (Raphidophyceae) bloom, we investigated the cell division pattern of its strains under various physicochemical conditions from three different origin. Among the three tested strains, HYM06HA and NFHTS-AK-1, are belong to South Korea and CCMP452 strain was from USA. Interestingly among three strains, HYM06HA was established from the cyst in Korea. Our study results showed that these three strains were indistinguishable under various salinity and iron (Fe) conditions. All strains were survived at 10 to 40 psu and the growth patterns under different iron (Fe) concentrations were observed to be similar. The growth patterns under different N:P ratios and selenium (Se) concentrations led to classification of strains into Korean and USA strain. Briefly these results indicated that the growth pattern from different strains of H. akashiwo could be dominant using their salinity tolerance. Furthermore nutritional enhancer seemed to be different based on geographical origin.

Heterosigma akashiwo의 대발생 기작을 규명하기 위하여 환경 요인들에 따른 성장률을 각각 비교하였다. 환경요인, 염분, N:P ratio, 철 (Fe), 셀레늄 (Se)을 대상으로 국내 배양주 2종과 국외 배양주 1종의 성장 특성을 확인하였다. 그 결과, H. akashiwo 배양주는 염분과 철의 농도에 따른 최대 성장률의 특성을 기반으로 지리학적 특이성을 찾기는 힘들었으나, 염분에 대한 내성은 강하여 10 psu에서 40 psu에서 생존이 가능한 것으로 나타났다. N:P ratio와 셀레늄은 국내 배양주와 국외 배양주의 차이를 보였다. 이와 같은 생리학적 특성에 대한 결과를 보았을 때, H. akashiwo가 염분에 대한 높은 내성을 기반으로 우점할 수 있으며, 풍부한 영양염을 이용하여 더욱 빠른 성장으로 대발생을 가능하게 할 수 있을 것이라고 판단된다.

Keywords

References

  1. Bearon RN, D Grunbaum and RA Cattolico. 2006. Effects of salinity structure on swimming behavior and harmful algal bloom formation in Heterosigma akashiwo, a toxic raphidophyte. Mar. Ecol. Prog. Ser. 306:153-163. https://doi.org/10.3354/meps306153
  2. Bourdelais AJ, CR Tomas, J Naar, J Kubanek and DG Baden. 2002. New fish-killing alga in coastal Delaware produces neurotoxin. Environ. Health Persp. 110:465-470. https://doi.org/10.1289/ehp.02110465
  3. Boyer GL and LE Brand. 1998. Trace elements and harmful algal blooms. pp.489-580. In physiological Ecology of Harmful Algal Blooms (Anderson DM, AD Cembella and GM Hallegraeff eds.). Springer. Berlin. Germany.
  4. Brand LE, RRL Guilard and LS Murphy. 1981. A method for the rapid and precise determination of acclimated phytoplankton reproduction rates. J. Plankton Res. 3:193-201. https://doi.org/10.1093/plankt/3.2.193
  5. Brand LE, WG Sunda and RRL Guillard. 1983. Limitation of marine phytoplankton reproductive rates by zinc manganese and iron. Limnol. Oceanogr. 28:182-198.
  6. Bruland KW, EL Rue and GJ Smith. 2001. Iron and macronutrients in California coastal upwelling regimes: implications for diatom blooms. Limnol. Oceanogr. 46:1661-1674. https://doi.org/10.4319/lo.2001.46.7.1661
  7. Connell LB. 2000. Nuclear ITS region of the alga Heterosigma akashiwo (Raphidophyceae) is identical in isolates from Atlantic and Pacific basins. Mar. Biol. 136:953-960. https://doi.org/10.1007/s002270000314
  8. Diehl S, SA Berger, R Ptacnik and A Wild. 2002. Phytoplankton, light, and nutrients in a gradient of mixing depths: field experiments. Ecology 83:399-411. https://doi.org/10.1890/0012-9658(2002)083[0399:PLANIA]2.0.CO;2
  9. Doblin MA, SI Blackburn and GM Hallegraeff. 2000. Intraspe- cific variation in the selenium requirement of different geographic strains of the toxic dinoflagellate Gymnodinium catenatum. J. Plankton Res. 22:421-432. https://doi.org/10.1093/plankt/22.3.421
  10. Erga SR and BR Heimdal. 1984. Ecological studies on the phytoplankton of Korsfjorden, western Norway. The dynamics of a spring bloom seen in relation to hydrographical conditions and light regime. J. Plankton Res. 6:67-90. https://doi.org/10.1093/plankt/6.1.67
  11. Guillard RRL, P Kilham and TA Jackson. 1973. Kinetics of silicon-limited growth in the marine diatom Thalassiosira pseudonana Hasle and Heimdal (=Cyclotella nana Hustedt). J. Phycol. 9:233-237.
  12. Hallegraeff GM, MA McCausland and PK Brown. 1995. Early warning of toxic dinoflagellate blooms of Gymnodinium catenatum in southern Tasmanian waters. J. Plankton Res. 17:1163-1176. https://doi.org/10.1093/plankt/17.6.1163
  13. Handy SM, KJ Coyne, KJ Portune, E Demir, MA Doblin, CE Hare, SC Cary and DA Hutchins. 2005. Evaluating vertical migration behavior of harmful raphidophytes in the Delaware Inland Bays utilizing quantitative real-time PCR. Aquat. Microb. Ecol. 40:121-132. https://doi.org/10.3354/ame040121
  14. Haque SM and Y Onoue. 2002. Effects of salinity on growth and toxin production of a noxious phytoflagellate, Heterosigma akashiwo (Raphidophyceae). Bot. Mar. 45:356-363.
  15. Honjo T. 1993. Overview on bloom dynamics and physiological ecology of Heterosigma akashiwo. pp.33-41. In Toxic Phytoplankton Blooms in the Sea (Smayda TJ and Y Shimizu eds.). Elsevier. Amsterdam.
  16. Hutchins DA and KW Bruland. 1998. Iron-limited diatom growth and Si:N uptake ratios in a coastal upwelling regime. Nature 393:561-564. https://doi.org/10.1038/31203
  17. Hutchins DA, GR Di Tullio, Y Zhang and KW Bruland. 1998. An iron limitation mosaic in the California upwelling regime. Limnol. Oceanogr. 43:1037-1054. https://doi.org/10.4319/lo.1998.43.6.1037
  18. Imai I and S Itakura. 1999. Importance of cysts in the population dynamics of the red tide flagellate Heterosigma akashiwo (Raphidophyceae). Mar. Biol. 133:755-762. https://doi.org/10.1007/s002270050517
  19. Ishimaru T, T Takeuchi, Y Fukuyo and M Kodama. 1989. The selenium requirement of Gymnodinium nagasakiense. pp. 357-360. In Biology, Environmental Science and Toxicology (Okaichi A and K Nemoto eds.). Elsevier. Sci. Obul. Co. Inc. Amsterdam.
  20. Kempton J, CJ Keppler, A Lewitus, A Shuler and S Wilde. 2008. A novel Heterosigma akashiwo (Raphidophyceae) bloom extending from a South Carolina bay to offshore waters. Harmful Algae 7:235-240. https://doi.org/10.1016/j.hal.2007.08.003
  21. Khan S, O Arakawa and Y Onoue. 1997. Neurotoxins in a toxic red tide of Heterosigma akashiwo (Raphidophyceae) in Kagoshima Bay, Japan. Aquacul. Res. 28:9-14. https://doi.org/10.1111/j.1365-2109.1997.tb01309.x
  22. Ki JS, GY Jang and MS Han. 2004. Integrated method for single- cell DNA extraction, PCR amplification, and sequencing of the ribosomal DNA from the harmful dinoflagellates Cochlodinium polykrikoides and Alexandrium catenella. Mar. Biotechnol. 6:587-593. https://doi.org/10.1007/s10126-004-1700-x
  23. Kim HG. 2006. Mitigation and controls of HABs. pp. 327-338. In Ecology of Harmful Algae (Graneeli E and JT Terner eds.). Ecological Studies, Vol. 189. Springer-Verlag. Berlin Heidelberg.
  24. Kim HG, JS Park and SG Lee. 1990. Coastal algal blooms caused by the cyst-forming dinoflagellates. Bull. Korean Fish. Soc. 23:468-474.
  25. Kim MC. 2006. Algal Growth Potential (AGP) Assay Using Heterosigma akashiwo (Raphidophyceae) in Pukman Bay, Korea. J. Korean Soc. Mar. Environ. Saf. 12:81-87.
  26. Lee J and MS Han. 2007. Change of blooming pattern and population dynamics of phytoplankton in Masan Bay, Korea. Ocean Sci. J. 12:147-158.
  27. Li D, W Cong, Z Cai, D Shi and F Ouyang. 2002. Response of growth and photosynthesis of marine red tide alga Heterosigma akashiwo to iron and iron stress condition. Biotechnol. Lett. 24:743-747. https://doi.org/10.1023/A:1015202620931
  28. Mahouney JB and JJA Mc Laughlin. 1979. Salinity influence on the ecology of phytoflagellate blooms in lower New York Bay and adjacent waters. J. Exp. Mar. Biol. Ecol. 37:213-223. https://doi.org/10.1016/0022-0981(79)90061-3
  29. Maldonado MT, MP Hughes, EL Rue and ML Wells. 2002. The effect of Fe and Cu on growth and domoic acid production by Pseudo-nitzschia multiseries and Pseudo-nitzchia australis. Limnol. Oceanogr. 47:515-526. https://doi.org/10.4319/lo.2002.47.2.0515
  30. Martin JH and SE Fitzwater. 1988. Iron deficiency limits phytoplankton growth in the north east Pacific subarctic. Nature 331:341-343. https://doi.org/10.1038/331341a0
  31. Martinez R, E Orive, A Laza-Martinez and AS Seoane. 2010. Growth response of six strains of Heterosigma akashiwo to varying temperature, salinity and irradiance conditions. J. Plankton Res. 32:529-538. https://doi.org/10.1093/plankt/fbp135
  32. McIntoch L, RA Cattolico. 1978. Preservation of algal and higher plant ribosomal RNA integrity during extraction and electrophoretic quantitation. Anal. Biochem. 91:600-612. https://doi.org/10.1016/0003-2697(78)90546-8
  33. Munday BL and GM Hallegraeff. 1998. Mass mortality of captive southern Bluefin tuna (Thunnus Maccoyii) in April/May 1996 in Boston Bay, South Australia: a complex diagnostic problem. Fish Pathol. 33:343-350. https://doi.org/10.3147/jsfp.33.343
  34. Odebrecht C and PC Abreu. 1995. Raphidophycean in southern Brazil IOC UNESCO. Harmful Algal News 12:4.
  35. Paerl HW. 1997. Coastal eutrophication and harmful algal blooms: Importance of atmospheric deposition and groundwater as "new" nitrogen and other nutrient sources. Limnol. Oceanogr. 42:1154-1165. https://doi.org/10.4319/lo.1997.42.5_part_2.1154
  36. Paerl HW, J Rudek and MA Mallin. 1990. Stimulation of phytoplankton production in coastal waters by natural rainfall inputs: nutritional and trophic implications. Mar. Biol. 170: 247-254.
  37. Shikata T, S Yohikawa, T Matsubara, W Tanoue, Y Yamasaki, Y Shimasaki, Y Matsuyama, Y Oshima, IR Jekinson and T Honjo. 2008. Growth dynamics of Heterosigma. Eur. J. Phycol. 43:395-411. https://doi.org/10.1080/09670260801979295
  38. Smayda TJ. 1998. Ecophysiology and bloom dynamics of Heterosigma akashiwo (Raphidophyceae). pp.113-131. In Physiological ecology of harmful algal blooms (Anderson DM, AD Cembella and GM Hallegraeff eds.). NATO ASI Series 41. Springer-Verlag, Berlin.
  39. Steidinger KA and K Haddad. 1981. Biologic and hydrographic aspects of red tides. Bio. Science 31:814-819.
  40. Sunda WG and SA Huntsman. 1995. Iron uptake and growth limitation in oceanic and coastal phytoplankton. Mar. Chem. 50:189-206. https://doi.org/10.1016/0304-4203(95)00035-P
  41. Taylor FJR and R Haigh. 1993. The ecology of fish-killing blooms of the chloromonad flagellate Heterosigma in the Strait of Georgia and adjacent waters. pp.705-710. In Toxic Phytoplankton Blooms in the Sea (Smayda TJ and Y Shimizu eds.). Elsevier. Amsterdam.
  42. Tomas CR. 1980. Olisthodiscus luteus (Chrysophyceae) V. Its occurrence, abundance and dynamics in Narragansett Bay, Rhode Island. J. Phycol. 16:157-166. https://doi.org/10.1111/j.1529-8817.1980.tb03012.x
  43. Tseng CK, MJ Zhou and JZ Zou. 1993. Toxic phytoplankton studies in China. pp.347-352. In Toxic Phytoplankton Blooms in the Sea (Smayda TJ and Y Shimizu eds.). Elsevier. Amsterdam.
  44. Van Leeuwe MA, R Scharek, HJW Baar, JTM Jong and L Goeyens. 1997. Iron enrichment experiments in the Southern Ocean: physiological responses of plankton communities. Deep-Sea Res. II 44:89-207.
  45. Watanabe M and Y Nakamura. 1984a. Growth characteristics of red tide flagellate, Heterosigma akashiwo (Hada) 2. The utilization of nutrients. Res. Rep. Natl. Inst. Environ. Stud. Jpn. 63:59-68.
  46. Watanabe M and Y Nakamura. 1984b. Growth characteristics of red tide flagellate, Heterosigma akashiwo (Hada) 1. The effect of temperature, salinity, light intensity and pH on growth. Res. Rep. Natl. Inst. Environ. Stud. Jpn. 63:51-58.
  47. Yamochi S. 1983. Mechanisms for outbreak of Heterosigma akashiwo red tide in Osaka Bay, Japan. J. Oceanogr. Soc. Japan 39:310-316. https://doi.org/10.1007/BF02071827
  48. Yamochi S and TA Be. 1984. Mechanisms to initiate a Heterosigma akashiwo red tide in Osaka Bay II Diel vertical migration. Mar. Biol. 83:255-261. https://doi.org/10.1007/BF00397457
  49. Zhang J. 2000. Evidence of trace metal limited photosynthesis in eutrophic estuarine and coastal waters. Limnol. Oceanogr. 45:1871-1878. https://doi.org/10.4319/lo.2000.45.8.1871