DOI QR코드

DOI QR Code

Preparation and electrochemical behaviour of biomass based porous carbons as electrodes for supercapacitors - a comparative investigation

  • Thambidurai, Adinaveen (Catalysis and Nanomaterials Research Laboratory, Department of Chemistry, Loyola College) ;
  • Lourdusamy, John Kennedy (Materials Division, School of Advanced Sciences, Vellore Institute of Technology (VIT) University, Chennai Campus) ;
  • John, Judith Vijaya (Catalysis and Nanomaterials Research Laboratory, Department of Chemistry, Loyola College) ;
  • Ganesan, Sekaran (Central Leather Research Institute)
  • Received : 2013.07.24
  • Accepted : 2013.10.27
  • Published : 2014.02.01

Abstract

We compared the relationship of the behavior and performance of sugarcane baggase and rice straw as supercapacitor electrodes. X-ray diffraction revealed the evolution of crystallites of carbon and silica during activation at higher temperature. The morphology of the carbon samples was determined by SEM. The surface area, pore volume, and pore size distribution of carbon composites were measured. The electrochemical responses were studied by using cyclic voltammetry experiment at $25^{\circ}C$ in a three-electrode configuration. The specific capacitance of the sugarcane bagasse carbon electrodes was in the range 92-340 F/g, whereas for rice straw, it was found to be 56-112 F/g at scan rates of 2-3 mV/s. The sugarcane bagasse carbon exhibited better performance than rice straw carbon using $H_2SO_4$ as the electrolyte. However, the results clearly show that lignocellulosic wastes possess a new biomass source of carbonaceous materials for high-performance supercapacitors.

Keywords

References

  1. J. R. Miller and P. Simon, Science, 321, 651 (2008). https://doi.org/10.1126/science.1158736
  2. P. Simon and Y. Gogotsi, Nature Materials, 7, 845 (2008). https://doi.org/10.1038/nmat2297
  3. A.G. Pandolfo and A. F. Hollenkamp, J. Power Sources, 157, 11 (2006). https://doi.org/10.1016/j.jpowsour.2006.02.065
  4. V.N. Vasile Obreja, Physica E: Low. Dimens. Syst. Nanostruct., 40, 2596 (2008). https://doi.org/10.1016/j.physe.2007.09.044
  5. J. A. Pessoa, I.M. de Manchilha and S. Sato, J. Ind. Microbio. Biotechnol., 18, 360 (1997). https://doi.org/10.1038/sj.jim.2900403
  6. P. Robinson, University of California Davis, Personal Communication (2006).
  7. W. T. Tsai, C. Y. Chang and S. L. Lee, Carbon, 35, 1198 (1997). https://doi.org/10.1016/S0008-6223(97)84654-4
  8. G. Yanping and D. A. Rockstraw, Micropor. Mesopor. Mater., 100, 12 (2007). https://doi.org/10.1016/j.micromeso.2006.10.006
  9. J. Hayashi, H. Toshihide, T. Isao, M. Katsuhiko and N.A. Fard, Carbon, 40, 2381 (2002). https://doi.org/10.1016/S0008-6223(02)00118-5
  10. W. C. Lim, C. Srinivasakannan and N. Balasubramanian, J. Anal. Appl. Pyrol., 88, 181 (2010). https://doi.org/10.1016/j.jaap.2010.04.004
  11. T. E. Rufford, D. H. Jurcakova, K. Khosla, Z. Zhu and L. Gao, J. Power Sources, 195, 912 (2010). https://doi.org/10.1016/j.jpowsour.2009.08.048
  12. H. Chun-Hisen and A. D. Ruey, Micropor. Mesopor. Mater., 147, 47 (2012). https://doi.org/10.1016/j.micromeso.2011.05.027
  13. F. Zhang, K. X. Wang, G. D. Li and J. S. Chen, Electrochem. Commun., 11, 130 (2009). https://doi.org/10.1016/j.elecom.2008.10.041
  14. I. Salame and J. B. Teresa, J. Ind. Eng. Chem. Res., 39, 301 (2000). https://doi.org/10.1021/ie9906316
  15. S. J Gregg and K. S.W. Sing, Adsorption, Surface Area and Porosity, Academic Press, London (1982).
  16. A. C. Pastor, R. Rodriguez, H. Marsh and M. A. Martinez, Carbon, 37, 1275 (1999). https://doi.org/10.1016/S0008-6223(98)00324-8
  17. C. Liao, C. Wu, Y. Yanyongjie and H. Huang, Biomass. Bioenerg., 27, 119 (2004). https://doi.org/10.1016/j.biombioe.2004.01.002
  18. P. J. Van Soest, Anim. Feed. Sci. Technol., 130, 137 (2006). https://doi.org/10.1016/j.anifeedsci.2006.01.023
  19. K. Raveendran, G. Anuraddha, C. Kartick and K. Khilar, Fuel, 74, 1812 (1995). https://doi.org/10.1016/0016-2361(95)80013-8
  20. N. Yalcin and V. Sevnic, Ceram. Int., 27, 219 (2001). https://doi.org/10.1016/S0272-8842(00)00068-7
  21. H.Y. Chang, H. P. Yun and R. P. Chong, Carbon, 39, 559 (2001). https://doi.org/10.1016/S0008-6223(00)00163-9
  22. K. S.W. Sing, Pure. Appl. Chem., 54, 2201 (1982). https://doi.org/10.1351/pac198254112201
  23. Y. Guo, S. Yang and Z. Wang, Mater. Chem. Phys., 74, 320 (2002). https://doi.org/10.1016/S0254-0584(01)00473-4
  24. V. Fierro, G. Muniz, A.H. Basta, H. El-Saied and A. Celzard, J. Hazard. Mater., 181, 27 (2010). https://doi.org/10.1016/j.jhazmat.2010.04.062
  25. Z. Zhu, Y. Hu, H. Jiang and C. Li, J. Power Sources, 246, 402 (2014). https://doi.org/10.1016/j.jpowsour.2013.07.086
  26. E. Jeong, M. J. Jung and Y. K. Lee, J. Fluorine Chem., 150, 98 (2013). https://doi.org/10.1016/j.jfluchem.2013.02.017
  27. W. T. Tsai, C.Y. Chang, M. C. Lin, S. F. Chien, H. F. Sun and M. F. Hsieh, Chemosphere, 45, 51 (2001). https://doi.org/10.1016/S0045-6535(01)00016-9
  28. T. Adinaveen, L. J. Kennedy, J. J. Vijaya and G. Sekeran, J. Ind. Eng. Chem., 19, 1470 (2013). https://doi.org/10.1016/j.jiec.2013.01.010
  29. V. Subramanian, C. Luo, A.M. Stephan, K. S. Nahm, S. Thomas and B. Wei, J. Phys. Chem. C, 111, 7527 (2007). https://doi.org/10.1021/jp067009t
  30. W. J. Si, X. Z. Wu, W. Xing, J. Zhou and S. P. Zhuo, J. Inorg. Mater., 26, 107 (2011). https://doi.org/10.3724/SP.J.1077.2010.10376
  31. X. Z. Wu, J. Zhou, W. Xing and S. P. Zhuo, J. North Uni. China, 33, 179 (2012).

Cited by

  1. Effects of the Mixing of an Active Material and a Conductive Additive on the Electric Double Layer Capacitor Performance in Organic Electrolyte vol.25, pp.3, 2014, https://doi.org/10.3740/mrsk.2015.25.3.132
  2. Fabrication of Solid‐State Flexible Fiber Supercapacitor Using Agave Americana Derived Activated Carbon and Its Performance Analysis at Different Conditions vol.1, pp.21, 2014, https://doi.org/10.1002/slct.201601365
  3. Promising Nitrogen-Rich Porous Carbons Derived from One-Step Calcium Chloride Activation of Biomass-Based Waste for High Performance Supercapacitors vol.4, pp.1, 2014, https://doi.org/10.1021/acssuschemeng.5b00926
  4. Biomass-derived carbon: synthesis and applications in energy storage and conversion vol.18, pp.18, 2016, https://doi.org/10.1039/c6gc01172a
  5. 유기계 슈퍼커패시터에서 도전재의 양이 전기화학적 특성에 미치는 영향 vol.26, pp.12, 2014, https://doi.org/10.3740/mrsk.2016.26.12.696
  6. Bio‐Nanotechnology in High‐Performance Supercapacitors vol.7, pp.21, 2014, https://doi.org/10.1002/aenm.201700592
  7. Biomass-derived carbon materials with structural diversities and their applications in energy storage vol.61, pp.2, 2014, https://doi.org/10.1007/s40843-017-9169-4
  8. Manufacturing Carbon Material by Carbonization of Cellulosic Palm Oil Waste for Supercapacitor Material vol.156, pp.None, 2014, https://doi.org/10.1051/matecconf/201815603018
  9. SnO2 Mixed Banana Peel Derived Biochar Composite for Supercapacitor Application vol.56, pp.5, 2018, https://doi.org/10.9713/kcer.2018.56.5.694
  10. Rational Synthesis of Highly Porous Carbon from Waste Bagasse for Advanced Supercapacitor Application vol.6, pp.11, 2014, https://doi.org/10.1021/acssuschemeng.8b03763
  11. Green and scalable synthesis of 3D porous carbons microstructures as electrode materials for high rate capability supercapacitors vol.8, pp.71, 2014, https://doi.org/10.1039/c8ra08534j
  12. Natural Plant Template-Derived Cellular Framework Porous Carbon as a High-Rate and Long-Life Electrode Material for Energy Storage vol.7, pp.6, 2014, https://doi.org/10.1021/acssuschemeng.8b05777
  13. Mesopore structure in Camellia Oleifera shell vol.256, pp.4, 2014, https://doi.org/10.1007/s00709-019-01371-5
  14. Superior architecture and electrochemical performance of MnO2 doped PANI/CNT graphene fastened composite vol.26, pp.5, 2014, https://doi.org/10.1007/s10934-019-00728-8
  15. An ultrasonic-assisted synthesis of rice-straw-based porous carbon with high performance symmetric supercapacitors vol.10, pp.6, 2020, https://doi.org/10.1039/c9ra08537h
  16. Vanadium nitride for aqueous supercapacitors: a topic review vol.8, pp.17, 2020, https://doi.org/10.1039/d0ta01490g
  17. The synthesis of activated carbon nanofiber electrode made from acacia leaves (Acacia mangium wild) as supercapacitors vol.11, pp.2, 2014, https://doi.org/10.1088/2043-6254/ab8b60
  18. Oxygen-rich hierarchical porous carbon derived from biomass waste-kapok flower for supercapacitor electrode vol.113, pp.None, 2014, https://doi.org/10.1016/j.diamond.2021.108267