DOI QR코드

DOI QR Code

Study to find the Optimal Purification Processing Conditions of Anthocyanin from Bokbunja Byproducts

복분자박을 이용한 안토시아닌 최적정제공정 연구

  • Received : 2013.11.28
  • Accepted : 2014.01.15
  • Published : 2014.02.28

Abstract

This study was performed to determine the purification yield, color value, and total anthocyanin content of purified anthocyanins from Bokbunja byproducts for analyzing the optimal conditions of purification processing by response surface methodology (RSM) based on HCl or trifluoroacetic acid (TFA) concentration as an acidulent and ethanol concentration as an eluent. From the results of purification yield, color value, and total anthocyanin content of the purified anthocyanins, it was shown that HCl was better than TFA for purification processing from Bokbunja byproducts and the optimal concentration range of ethanol was 60-75%. The optimal purification conditions for HCl or TFA, ethanol concentration, and overall desirability by analysis of multiple response surface methodology with the same weighed value for each dependent variable were 0.84%, 73.12% and 0.77 for HCl acidulent and 1.00%, 60.75%, and 0.96 for TFA acidulent, respectively.

본 연구는 복분자박의 안토시아닌을 천연색소원으로 활용하기 위하여 MCX SPE cartridge를 흡착제로 사용하였으며 pH 조절제로서 HCl 또는 trifluoroacetic acid(TFA)의 농도 변화 및 용출제로서 ethanol 농도 변화에 따른 수율, 색 가 및 총 안토시아닌 함량 등을 반응표면분석법에 의하여 최적화하였다. 정제된 안토시아닌의 수율, 색가 및 총 안토시아닌 함량을 전반적으로 분석한 결과 pH 조절제로서 HCl이 TCA보다 우수하게 나타났으며 용출제로서의 ethanol의 농도로는 60-75%수준에서 가장 좋은 결과를 얻었다. 다중반응표면의 최적화방법으로써 만족함수(desirability function)를 이용하여 종속변수들의 가중치를 1로 놓고 분석한 결과 pH 조절제가 HCl인 경우 최적 분리정제 조건은 HCl 0.84%, ethanol 73.12%의 조건이었으며 전반적인 만족도는 0.77이었다. TFA에서의 최적 분리정제조건은 TFA 1.0%, ethanol 60.75%의 조건이었으며 전반적인 만족도는 0.96이었다.

Keywords

Acknowledgement

Supported by : 농림수산식품기술기획평가원

References

  1. Castaneda-Ovando A, Pacheco-Hernandez ML, Paez-Hernandez ME, Rodriguez JA, Galan-Vidal CA. 2009. Chemical studies of anthocyanins. Food Chem. 113: 859-871. https://doi.org/10.1016/j.foodchem.2008.09.001
  2. Choi SJ. 2010. The difference of anthocyanin pigment composition and color expression in fruit skin of several grape cultivars. Korean J. Food Preserv. 17: 847-852.
  3. Choung MG. 2004. Analysis of anthocyanins. Korean J. Crop Sci. 49: 55-67.
  4. Choung MG, Lim JD. 2012. Antioxidant, anticancer and immune avtivation of anthocyanin fraction from Rubus coreanus Miquel fruits (Bokbunja). Korean J. Medicinal Crop Sci. 20: 259-269. https://doi.org/10.7783/KJMCS.2012.20.4.259
  5. Cooper-Diver GA. 2001. Contributions of Jeffrey Harborne and co-workers to the study of anthocyanins. Phytochemistry 56: 229-236. https://doi.org/10.1016/S0031-9422(00)00455-6
  6. Fleschhut J, Kratzer F, Rechkemmer G, Kulling SE. 2006. Stability and biotransformation of various dietary anthocyanins in vitro. European J. Nutr. 45: 7-18. https://doi.org/10.1007/s00394-005-0557-8
  7. Fuleki T, Francis FJ. 1968. Quantitative methods for anthocyanins. 1. Extraction and determination of total anthocyanin in cranberries. J. Food Sci. 33: 72-77. https://doi.org/10.1111/j.1365-2621.1968.tb00887.x
  8. Guillotin S, Sanoner P, Renard CMGC. 2009. Stabilization of the colour of anthocyanin in solutions by admixture with phytocomponents from apple. J. Hortic. Sci. Biotech. ISAFRUIT Special Issue 96-99.
  9. He J, Giusti MM. 2011. High-purity isolation of anthocyanins mixtures from fruits and vegetables-A novel solid-phase extraction method using mixed mode cation-exchange chromatography. J. Chromatogr. A. 1218: 7914-7922. https://doi.org/10.1016/j.chroma.2011.09.005
  10. Hosseinian FS, Li W, Beta T. 2008. Measurement of anthocyanins other phytochemicals in purple wheat. Food Chem. 109: 916-924. https://doi.org/10.1016/j.foodchem.2007.12.083
  11. Jackman RL, Yada RY, Tung MA. 1987. Separation and chemical properties of anthocyanins used for their qualitative and quantitative analysis. A review. J. Food Biochem. 11: 279-308. https://doi.org/10.1111/j.1745-4514.1987.tb00128.x
  12. Jeong YJ, Seo JH. 2009. Conditions for pigment extraction from Bokbunja (Rubus coreanus Miquel) byproducts. Korean J. Food Preserv. 16: 400-404.
  13. Konczak I, Zhang W. 2004. Anthocyanins-more than nature colors. J. Biomed. Biotechnol. 2004: 239-240. https://doi.org/10.1155/S1110724304407013
  14. Ku CS, Mun SP. 2008. Optimization of extraction of anthocyanin from Bokbunja (Rubus coreanus Miq.) marc produced traditional wine processing and characterization of the extracts. Bioresource Technol. 99: 8325-8330. https://doi.org/10.1016/j.biortech.2008.03.013
  15. Metivier RP, Francis FJ, Clydesdale FM. 1980. Solvent extraction of anthocyanins from wine pomace. J. Food Sci. 45: 1099-1100. https://doi.org/10.1111/j.1365-2621.1980.tb07534.x
  16. Ryu IH, Kwon TO. 2013. Optimization of macerating enzymatic extraction process and components change of extract of Rubus coreanus Miq. fruit. Korean J. Medicinal Crop Sci. 21: 97-104. https://doi.org/10.7783/KJMCS.2013.21.2.97

Cited by

  1. Antioxidant Activity of Brown Soybean Ethanolic Extracts and Application to Cooked Pork Patties vol.36, pp.3, 2016, https://doi.org/10.5851/kosfa.2016.36.3.359
  2. pH 조절제를 이용한 농축 딸기 퓌레 열처리 시 품질저하 억제 vol.45, pp.10, 2014, https://doi.org/10.3746/jkfn.2016.45.10.1518
  3. pH 조절제를 이용한 농축 블루베리주스 열처리 시 품질저하억제 vol.48, pp.5, 2016, https://doi.org/10.9721/kjfst.2016.48.5.496
  4. 농축 블루베리 퓌레 열처리 시 pH 조절제의 품질 저하 억제 효과 vol.32, pp.5, 2016, https://doi.org/10.9724/kfcs.2016.32.5.549
  5. 고구마 끝순 및 괴근의 안토시아니딘 추출 조건 최적화 vol.52, pp.3, 2014, https://doi.org/10.9721/kjfst.2020.52.3.290