DOI QR코드

DOI QR Code

Nitrate Nitrogen Reduction Technology for Safe Groundwater Drinking

지하수의 안전한 음용을 위한 흡착기반 질산성질소 저감화 기술

  • Choi, Kyeong-Ok (Department of Food Science and Technology, Sejong University) ;
  • Seo, Seok Jin (Department of Food Science and Technology, Sejong University) ;
  • Ko, Sanghoon (Department of Food Science and Technology, Sejong University)
  • Received : 2013.11.08
  • Accepted : 2014.01.23
  • Published : 2014.02.28

Abstract

Excessive nitrate content in drinking groundwater is one of the sources of nitrate-nitrogen that threatens human health all over the world. Nitrate-nitrogen reduction technology is categorized into membrane filtration, electro-dialysis, ion exchange, adsorption, chemical methods, and biological methods according to the principle of elimination from water. In particular, an adsorption technique is the most popular and common process because of its cost effectiveness, convenience, and effective adsorption. In this review, the application of conventional adsorbents used to reduce nitrate-nitrogen from drinking water is discussed and novel technologies on nitrate-nitrogen removal are introduced. Furthermore, the recent development of novel nitrate-nitrogen adsorbents from biopolymers such as chitosan and agricultural and industrial byproducts is reviewed.

본 논문에서는 음용수 내 질산성질소 저감화 기술에 대해 간략히 소개하였으며 그 중 흡착기술을 이용한 질산성질소 저감화 기술에 대해 세부적으로 논의하였다. 또한, 기존 흡착소재의 개질 및 새로운 소재 개발을 통한 질산성질소 제거효율 향상 기술을 간략하게 소개하였다. 본문에서 살펴본 바와 같이 질산성질소 저감화 기술은 제거원리에 따라서 크게 몇 가지로 분류할 수 있으나, 본문에서 언급되지 않은 새로운 기술이 지속적으로 연구 또는 개발되고있다. 흡착소재는 가격, 설치 및 유지비가 상대적으로 저렴하고, 설치 및 조작이 간편하며, 정수 규모에 상관없이 쉽게 적용할 수 있기 때문에 수처리 산업에서 가장 널리 이용되고 있다. 활성탄과 같은 탄소소재, 제올라이트나 점토와 같은 실리케이트는 다양한 물질에 대한 흡착력을 보이며 표면개질을 통한 특정 오염원의 제거 향상률이 높기 때문에 오래 전부터 흡착소재로 가장 널리 연구되어 왔으며, 최근에는 키토산과 같은 생체고분자 물질이나 농업 및 산업 폐기물을 재활용한 새로운 소재 개발이 활발히 진행되고 있다. 음용수의 오염 및 소비자들의 물에 대한 불신이 커져가고 있는 시점에서 현재 연구되고 있는 새로운 흡착소재의 개발 및 저렴하고 제거효율이 뛰어난 흡착소재의 개발은 안전한 음용수의 공급을 가능케 하여 국민 건강에 이바지 할 것이다.

Keywords

Acknowledgement

Supported by : 환경부

References

  1. Afkhami A, Madrakian T, Karimi Z. 2007. The effect of acid treatment of carbon cloth on the adsorption of nitrite and nitrate ions. J. Hazard. Mater. 144: 427-431. https://doi.org/10.1016/j.jhazmat.2006.10.062
  2. Aghaii MD, Pakizeh M, Ahmadpour A. 2013. Synthesis and characterization of modified UZM-5 as adsorbent for nitrate removal from aqueous solution. Sep. Purif. Technol. 113: 24-32. https://doi.org/10.1016/j.seppur.2013.04.013
  3. Ahmad Z, Normanbhay S. 2012. The removal of uranium from aqueous solution. J. Nuclear Related Technol. 9: 109-120.
  4. Ahmadzadeh Tofighy M, Mohammadi T. 2012. Nitrate removal from water using functionalized carbon nanotube sheets. Chem. Eng. Res. Des. 90: 1815-1822. https://doi.org/10.1016/j.cherd.2012.04.001
  5. Ali I, Gupta VK. 2007. Advances in water treatment by adsorption technology. Nat. Protoc. 1: 2661-2667. https://doi.org/10.1038/nprot.2006.370
  6. Arora M, Eddy NK, Mumford KA, Baba Y, Perera JM, Stevens GW. 2010. Surface modification of natural zeolite by chitosan and its use for nitrate removal in cold regions. Cold Reg. Sci. Technol. 62: 92-97. https://doi.org/10.1016/j.coldregions.2010.03.002
  7. Back K, Lee HH, Kim BK, Yang JW. 2003. Characteristics of nitrate removal using micellar-enhanced ultrafiltration. J. Soil Groundwater Environ. 8: 36-43.
  8. Belfiore A, Panciatici G, Lomoro A. 1984. Removal of thorium and uranium from surfaces by attapulgus clay suspensions. Inorg. Chim. Acta 94: 159-160. https://doi.org/10.1016/S0020-1693(00)94624-3
  9. Bhardwaj D, Sharma M, Sharma P, Tomar R. 2012. Synthesis and surfactant modification of clinoptilolite and montmorillonite for the removal of nitrate and preparation of slow release nitrogen fertilizer. J. Hazard. Mater. 227-228: 292-300. https://doi.org/10.1016/j.jhazmat.2012.05.058
  10. Bhatnagar A, Ji M, Choi YH, Jung W, Lee SH, Kim SJ, Lee G, Suk H, Kim HS, Min B, Kim SH, Jeon BH, Kang JW. 2008. Removal of Nitrate from Water by Adsorption onto Zinc Chloride Treated Activated Carbon. Separ. Sci. Technol. 43: 886-907. https://doi.org/10.1080/01496390701787461
  11. Bhatnagar A, Sillanpaa M. 2011. A review of emerging adsorbents for nitrate removal from water. Chem. Eng. J. 168: 493-504. https://doi.org/10.1016/j.cej.2011.01.103
  12. Chatterjee S, Lee DS, Lee MW, Woo SH. 2009. Nitrate removal from aqueous solutions by cross-linked chitosan beads conditioned with sodium bisulfate. J. Hazard. Mater. 166: 508-513. https://doi.org/10.1016/j.jhazmat.2008.11.045
  13. Chatterjee S, Woo SH. 2009. The removal of nitrate from aqueous solutions by chitosan hydrogel beads. J. Hazard. Mater. 164: 1012-1018. https://doi.org/10.1016/j.jhazmat.2008.09.001
  14. Chen SS, Hsu HD, Li CW. 2004. A new method to produce nanoscale iron for nitrate removal. J. Nanopart. Res. 6: 639-647. https://doi.org/10.1007/s11051-004-6672-2
  15. Cheng IF, Muftikian R, Fernando Q, Korte N. 1997. Reduction of nitrate to ammonia by zero-valent iron. Chemosphere 35: 2689-2695. https://doi.org/10.1016/S0045-6535(97)00275-0
  16. Culp GL, Culp RL. 1974. New concepts in water purification. Van Nostrand Reinhold Co., New York, USA.
  17. Deb A, Ilaiyaraja P, Ponraju D, Venkatraman B. 2012. Diglycolamide functionalized multi-walled carbon nanotubes for removal of uranium from aqueous solution by adsorption. J. Radioanal. Nucl. Chem. 291: 877-883. https://doi.org/10.1007/s10967-011-1366-6
  18. Demiral H, Gündüzo lu G. 2010. Removal of nitrate from aqueous solutions by activated carbon prepared from sugar beet bagasse. Bioresource Technol. 101: 1675-1680. https://doi.org/10.1016/j.biortech.2009.09.087
  19. Duncan C, Li H, Dykhuizen R, Frazer R, Johnston P, MacKnight G, Smith L, Lamza K, McKenzie H, Batt L, Kelly D, Golden M, Benjamin N, Leifert C. 1997. Protection against oral and gastrointestinal diseases: Importance of dietary nitrate intake, oral nitrate reduction and enterosalivary nitrate circulation. Comp. Biochem. Phys. A 118: 939-948. https://doi.org/10.1016/S0300-9629(97)00023-6
  20. Jaafari K, Elmaleh S, Coma J, Benkhouja K. 2001. Equilibrium and kinetics of nitrate removal by protonated cross-linked chitosan. Water SA 27: 9-13.
  21. Jaafari K, Ruiz T, Elmaleh S, Coma J, Benkhouja K. 2004. Simulation of a fixed bed adsorber packed with protonated crosslinked chitosan gel beads to remove nitrate from contaminated water. Chem. Eng. J. 99: 153-160. https://doi.org/10.1016/j.cej.2003.10.008
  22. Khan MA, Ahn YT, Kumar M, Lee W, Min B, Kim G, Cho DW, Park WB, Jeon BH. 2011. Adsorption studies for the removal of nitrate using modified lignite granular activated carbon. Sep. Sci. Technol. 46: 2575-2584. https://doi.org/10.1080/01496395.2011.601782
  23. Kim JW, Choi GW. 2010. Comparison of nitrate-nitrogen removal characteristics between membrane process and ion exchange process. J. Korean Soc. Water Sci. Technol. 18: 55-60.
  24. Liou YH, Lo SL, Lin CI, Hu CY, Kuan WH, Weng SC. 2005. Methods for accelerating nitrate reduction using zerovalent iron at near-neutral pH: effects of H2-reducing pretreatment and copper deposition. Environ. Sci. Technol. 39: 9643-9648. https://doi.org/10.1021/es048038p
  25. Mat j V, izinska S, Krej i J, Janoch T. 1992. Biological water denitrification-A review. Enzyme Microb. Tech. 14: 170-183. https://doi.org/10.1016/0141-0229(92)90062-S
  26. Mazeikiene A, Valentukevi iene M, Rimeika M, Matuzevi ius AB, Dauknys R. 2008. Removal of nitrates and ammonium ions from water using natural sorbent zeolite (clinoptilolite). J. Environ. Eng. Landsc. 16: 38-44. https://doi.org/10.3846/1648-6897.2008.16.38-44
  27. Mena-Duran CJ, Sun Kou MR, Lopez T, Azamar-Barrios JA, Aguilar DH, Dominguez MI, Odriozola JA, Quintana P. 2007. Nitrate removal using natural clays modified by acid thermoactivation. Appl. Surf. Sci. 253: 5762-5766. https://doi.org/10.1016/j.apsusc.2006.12.103
  28. Mishra PC, Patel RK. 2009. Use of agricultural waste for the removal of nitrate-nitrogen from aqueous medium. J. Environ. Manage. 90: 519-522. https://doi.org/10.1016/j.jenvman.2007.12.003
  29. Mizuta K, Matsumoto T, Hatate Y, Nishihara K, Nakanishi T. 2004. Removal of nitrate-nitrogen from drinking water using bamboo powder charcoal. Bioresour. Technol. 95: 255-257. https://doi.org/10.1016/j.biortech.2004.02.015
  30. Moreno Castilla C. 2004. Adsorption of organic molecules from aqueous solutions on carbon materials. Carbon 42: 83-94. https://doi.org/10.1016/j.carbon.2003.09.022
  31. Onyango M, Masukume M, Ochieng A, Otieno F. 2010. Functionalised natural zeolite and its potential for treating drinking water containing excess amount of nitrate. Water SA 36: 655-662.
  32. Patil ID, Husain M, Rahane VR. 2013. Ground water nitrate removal by using 'Chitosan' as an adsorbent. IJMER 3: 346-349.
  33. Rezaee A, Godini H, Dehestani S, Khavanin A. 2008. Application of impregnated almond shell activated carbon by zinc and zinc sulfate for nitrate removal from water. Iran. J. Environ. Healt. 5: 125-130.
  34. Sablani SS, Goosen MFA, Al-Belushi R, Wilf M. 2001. Concentration polarization in ultrafiltration and reverse osmosis: a critical review. Desalination 141: 269-289. https://doi.org/10.1016/S0011-9164(01)85005-0
  35. Saifuddin N, Kumaran P. 2005. Removal of heavy metal from industrial wastewater using chitosan coated oil palm shell charcoal. Electron. J. Biotechn. 8: 43-53.
  36. Samatya S, Kabay N, Yuksel U, Arda M, Yuksel M. 2006. Removal of nitrate from aqueous solution by nitrate selective ion exchange resins. React. Funct. Polym. 66: 1206-1214. https://doi.org/10.1016/j.reactfunctpolym.2006.03.009
  37. Seliem MK, Komarneni S, Byrne T, Cannon FS, Shahien MG, Khalil AA, Abd El-Gaid IM. 2013. Removal of nitrate by synthetic organosilicas and organoclay: Kinetic and isotherm studies. Sep. Purif. Technol. 110: 181-187. https://doi.org/10.1016/j.seppur.2013.03.023
  38. Shannon MA, Bohn PW, Elimelech M, Georgiadis JG, Marinas BJ, Mayes AM. 2008. Science and technology for water purification in the coming decades. Nature 452: 301-310. https://doi.org/10.1038/nature06599
  39. Sim JH, Kang SH, Seo HJ. 2008. Study on the improvement of nitrate removal efficiency in multi-step electro-chemical process. J. Korean Soc. Environ. Eng. 30: 155-160.
  40. Sowmya A, Meenakshi S. 2013. An efficient and regenerable quaternary amine modified chitosan beads for the removal of nitrate and phosphate anions. JECE 1: 906-915.
  41. Stopa LCB, Yamaura M. 2010. Uranium removal by chitosan impregnated with magnetite nanoparticles: adsorption and desorption. Int. J. Nuclear Energy Sci. Tech. 5: 283-289. https://doi.org/10.1504/IJNEST.2010.035538
  42. Tezuka S, Chitrakar R, Sonoda A, Ooi K, Tomida T. 2004. Studies on selective adsorbents for oxo-anions. Nitrate ion-exchange properties of layered double hydroxides with different metal atoms. Green Chem. 6: 104-109. https://doi.org/10.1039/b314938m
  43. Wan Ngah WS, Endud CS, Mayanar R. 2002. Removal of copper(II) ions from aqueous solution onto chitosan and crosslinked chitosan beads. React. Funct. Polym. 50: 181-190. https://doi.org/10.1016/S1381-5148(01)00113-4
  44. Xi Y, Mallavarapu M, Naidu R. 2010. Preparation, characterization of surfactants modified clay minerals and nitrate adsorption. Appl. Clay Sci. 48: 92-96. https://doi.org/10.1016/j.clay.2009.11.047
  45. Yu W, Gao BY, Yue WW, Yue QY. 2007. Preparation and utilization of wheat straw anionic sorbent for the removal of nitrate from aqueous solution. J. Environ. Sci. China 19: 1305-1310. https://doi.org/10.1016/S1001-0742(07)60213-7
  46. Zhang Y, Li Y, Li J, Hu L, Zheng X. 2011. Enhanced removal of nitrate by a novel composite: Nanoscale zero valent iron supported on pillared clay. Chem. Eng. J. 171: 526-531. https://doi.org/10.1016/j.cej.2011.04.022

Cited by

  1. 다양한 질소화합물에 대한 황산화미생물 바이오센서의 응답 특성 vol.33, pp.4, 2014, https://doi.org/10.5338/kjea.2014.33.4.314
  2. 부영양화 방지를 위하여 느릅나무 수피를 활용한 수중에서 질산성질소의 제거능 향상 vol.26, pp.5, 2014, https://doi.org/10.14478/ace.2015.1086
  3. 수용액으로부터 질산성질소 제거를 위한 기술 vol.23, pp.1, 2014, https://doi.org/10.7464/ksct.2017.23.1.001