DOI QR코드

DOI QR Code

Thermal Stability of the Thermoelectric Skutterudite $In_{0.25}Co_3MnSb_{12}$

  • Park, Kwan-Ho (Energy and Environmental Materials Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Seo, Won-Seon (Energy and Environmental Materials Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Choi, Soon-Mok (School of Energy, Materials and Chemical Engineering, Korea University of Technology and Education) ;
  • Kim, Il-Ho (Department of Materials Science and Engineering, Korea National University of Transportation)
  • Received : 2013.08.13
  • Published : 2014.01.15

Abstract

The skutterudite $R_yCo_{4-x}T_xSb_{12}$ is a candidate material for thermoelectric power generation in the mid-temperature range (500 - 800 K) because its thermoelectric properties can be enhanced by doping (T: dopant) and filling (R: filler or rattler). The thermal stability of skutterudite-based thermoelectric modules is of great importance because they are used at elevated temperatures. This study examined the high-temperature stability of In-filled and Mn-doped skutterudites ($In_{0.25}Co_3MnSb_{12}$) as a function of the aging variables: atmosphere (vacuum and air), temperature and time. Sb-based oxides are produced preferentially when the skutterudites are exposed to high temperatures in air. The oxide layer produced during aging at 823 K in air was much thinner than that produced during aging at 723 K in air. The formation of InSb is believed to retard the oxidation of Sb and InSb is believed to act as an obstacle to the growth of the oxide layer. The $CoSb_3$-based skutterudites were stable at 823 K if they were not exposed to air, and no InSb phases were produced in the $In_{0.25}Co_3MnSb_{12}$ skutterudites.

Keywords

References

  1. D. Zhao, X. Li, L. He, W. Jiang and L. Chen, Intermetallics 17, 136 (2009). https://doi.org/10.1016/j.intermet.2008.10.010
  2. X. Shi, J. R. Salvador, J. Yang and H.Wang, J. Electron. Mater. 38, 930 (2009). https://doi.org/10.1007/s11664-008-0650-x
  3. X. Shi, H. Kong, C. P. Li, C. Uher, J. Yang, J. R. Salvador, H. Wang, L. Chen and W. Zhang, Appl. Phys. Lett. 92, 182101 (2008). https://doi.org/10.1063/1.2920210
  4. J. S. Dyck, W. Chen, C. Uher, L. Chen, X. Tang and T. Hirai, J. Appl. Phys. 91, 3698 (2002). https://doi.org/10.1063/1.1450036
  5. K. Liu, X. Dong and Z. Jiuxing, Mater. Chem. Phys. 96, 371 (2006). https://doi.org/10.1016/j.matchemphys.2005.07.068
  6. X. Y. Zhao, X. Shi, L. D. Chen, W. Q. Zhang, S. Q. Bai, Y. Z. Pei, X. Y. Li and T. Goto, Appl. Phys. Lett. 89, 92121 (2006). https://doi.org/10.1063/1.2345249
  7. X. Tang, Q. Zhang, L. Chen, T. Goto and T. Hirai, J. Appl. Phys. 97, 93712 (2005). https://doi.org/10.1063/1.1888048
  8. G. Rogl, A. Grytsiv, E. Bauer, P. Rogl and M. Zehetbauer, Intermetallics 18, 394 (2010). https://doi.org/10.1016/j.intermet.2009.08.010
  9. S. Bao, J. Yang, J. Peng, W. Zhu, X. Fan and X. Song, J. Alloys Compd. 421, 105 (2006). https://doi.org/10.1016/j.jallcom.2005.11.023
  10. H. Li, X. Tang, Q. Zhang and C. Uher, Appl. Phys. Lett. 94, 102114 (2009). https://doi.org/10.1063/1.3099804
  11. S. Q. Bai, Y. Z. Pei, L. D. Chen, W. Q. Zhang, X. Y. Zhao and J. Yang, Acta Mater. 57, 3135 (2009). https://doi.org/10.1016/j.actamat.2009.03.018
  12. M. S. El-Genk, H. H. Saber, T. Caillat and J. Sakamoto, Energ. Conv. Manag. 47, 174 (2006). https://doi.org/10.1016/j.enconman.2005.03.023
  13. H. H. Saber, M. S. El-Genk and T. Caillat, Energ. Conv. Manag. 48, 555 (2007). https://doi.org/10.1016/j.enconman.2006.06.008
  14. R. Hara, S. Inoue, H.T. Kaibe and S. Sano, J. Alloys Compd. 349, 297 (2003). https://doi.org/10.1016/S0925-8388(02)00902-7
  15. R. S. Muller and T. I. Kamins, Device Electronics for Integrated Circuits, 2nd ed. (John Wiley & Sons, Inc. 1986), p. 69.
  16. J. Burke, The Kinetics of Phase Transformations in Metals (Pergamon Press Ltd., 1965), p. 70.
  17. D. Zhao, C. Tian, S. Tang, Y. Liu and L. Chen, J. Alloys Compd. 504, 552 (2010). https://doi.org/10.1016/j.jallcom.2010.05.160
  18. K. H. Park, S. W. You, S. C. Ur, I. H. Kim, S. M. Choi and W. S. Seo, J. Electron. Mater. 41, 1051 (2012). https://doi.org/10.1007/s11664-011-1889-1

Cited by

  1. 고온열전모듈용 금속유리계 페이스트 연구 vol.31, pp.4, 2014, https://doi.org/10.4313/jkem.2018.31.4.249
  2. Understanding Oxidation Resistance of Half-Heusler Alloys for in-Air High Temperature Sustainable Thermoelectric Generators vol.12, pp.32, 2020, https://doi.org/10.1021/acsami.0c08413