DOI QR코드

DOI QR Code

Fabrication and Evaluation of Hybrid Scaffold by Nano-Micro Precision Deposition System

나노-마이크로 정밀 분사 시스템을 이용한 하이브리드 인공지지체의 제작 및 평가

  • Received : 2014.04.17
  • Accepted : 2014.05.30
  • Published : 2014.08.01

Abstract

Recently, three-dimensional scaffolds and nanofibers are being developed for bone tissue regeneration. In this study, we fabricated a hybrid scaffold using a nano-micro precision deposition system. The fabrication process involved the application of the solid freeform fabrication (SFF) technology and electrospinning. The hybrid scaffolds were combined using micro scaffolds and nanofibers. The nanofibers were deposited on each layer of the micro scaffolding using the electrospinning process. The micro scaffolds were fabricated using the SFF technology at a temperature of $100^{\circ}C$, pressure of 650 kPa, and scan velocity of 250 mm/s. Nanofiber fabrication was conducted by means of electrospinning using the flow rate, solution concentration, distance from the tip to the collector (TCD), and voltage. The nanofibers were fabricated using a flow rate of 0.1 ml/min, voltage of 5 kV, TCD of 1 mm, and 10 wt% of solution concentration. MG-63 cells were seeded into the hybrid scaffold for the purpose of its evaluation.

최근에, 3 차원 인공지지체와 나노섬유는 골 조직 재생을 위해 개발되고 있다. 본 연구에서는, 나노-마이크로 정밀 분사 시스템을 이용하여 하이브리드 인공지지체를 제작하였다. 하이브리드 인공지지체는 마이크로 인공지지체와 나노섬유가 결합하여 제작되었으며, 마이크로 인공지지체와 나노섬유를 얻기 위해 자유 형상 제작 기술과 전기방사 기법이 사용되었다. 마이크로 인공지지체는 정밀한 공극을 고려하여 CAD/CAM 데이터 따라 자유 형상 제작 기술에 의해 제작되었으며, 제작 공정은 $100^{\circ}C$의 온도, 평균 650 kPa의 압력, 그리고 250 mm/sec의 Z 축 이송속도가 적용되었다. 그리고 전기방사법을 통하여 나노섬유를 제작함에 있어서 본 시스템에 적용한 공정 조건은, 5 kV의 전압, 0.1 ml/min의 유량, 그리고 1 mm의 노즐 팁과 콜렉터와의 거리로 설정하였다. 제작된 하이브리드 인공지지체는 MG-63 세포를 이용하여 세포 증식 실험을 진행하였다.

Keywords

References

  1. Zeng, C., Yang, Q., Zhu, M., Du, L., Zhang, J., Ma, X., Xu, B. and Wang, L., 2014, "Silk Fibroin Porous Scaffolds for Nucleus Pulposus Tissue Engineering," Materials Science and Engineering: C, Vol. 37, No. 1, pp. 232-240. https://doi.org/10.1016/j.msec.2014.01.012
  2. Cheng, C., W., Solorio, L., D. and Alsberg, E., 2014, "Decellularized Tissue and Cell-Derived Extracellular Matrices as Scaffolds for Orthopaedic Tissue Engineering," Biotechnology Advances, Vol. 32, No. 2, pp. 462-484. https://doi.org/10.1016/j.biotechadv.2013.12.012
  3. Mehdizadeh, H., Sumo, S., Bayrak, E., Brey, E., M. and Cinar, A., 2013, "Three-Dimensional Modeling of Angiogenesis in Porous Biomaterial Scaffolds," Biomaterials, Vol. 34, No. 12, pp. 2875-2887. https://doi.org/10.1016/j.biomaterials.2012.12.047
  4. Bae, M., S., Jeong, S., I., Kim, S., E., Lee, J., B., Heo, D., N. and Kwon, I., K., 2008, "Nanofiber Scaffold for Tissue Regeneration Using Electrospinning Method," Tissue Engineering and Regenerative Medicine, Vol. 5, No. 2, pp. 196-203.
  5. Niu, Y., Chen, K., C., He, T., Yu, W., Huang, S. and Xu, K., 2014, "Scaffolds from Block Polyurethanes Based on Poly($\varepsilon$-Caprolactone) (PCL) and Poly(Ethylene Glycol) (PEG) for Peripheral Nerve Regeneration," Biomaterials, Vol. 35, No. 14, pp. 4266-4277. https://doi.org/10.1016/j.biomaterials.2014.02.013
  6. Dorj, B., Won, J. E., Purevdorj, O., Patel, K. D., Kim, J. H., Lee, E. J. and Kim, H. W., 2014, "A Novel Therapeutic Design of Microporous-Structured Biopolymer Scaffolds for Drug Loading and Delivery," Acta Biomaterialia, Vol. 10, No. 3, pp. 1238-1250. https://doi.org/10.1016/j.actbio.2013.11.002
  7. Takagi, H. and Asano, A., 2008, "Effects of Processing Conditions on Flexural Properties of Cellulose Nanofiber Reinforced "Green" Composites," Composites Part A: Applied Science and Manufacturing, Vol. 39, No. 4, pp. 685-689. https://doi.org/10.1016/j.compositesa.2007.08.019
  8. Kim, J., Y., 2012, "A Study on the Fabrication of Various 3D Microstructures Using Polymer Deposition System," Journal of the Korean Society for Precision Engineering, Vol. 29, No. 6, pp. 686-692. https://doi.org/10.7736/KSPE.2012.29.6.686
  9. Olakanmi, E., O., 2013, "Selective Laser Sintering/Melting (SLS/SLM) of Pure Al, Al-Mg, and Al-Si Powders: Effect of Processing Conditions and Powder Properties," Journal of Materials Processing Technology, Vol. 213, No. 8, pp. 1387-1405. https://doi.org/10.1016/j.jmatprotec.2013.03.009
  10. Kantaros, A. and Karalekas, D., 2013, "Fiber Bragg Grating Based Investigation of Residual Strains in ABS Parts Fabricated by Fused Deposition Modeling Process," Materials & Design, Vol. 50, pp. 44-50. https://doi.org/10.1016/j.matdes.2013.02.067
  11. Ruckh, T., T., Kumar, K., Kipper, M., J. and Popat, K., C., 2010, "Osteogenic Differentiation of Bone Marrow Stromal Cells on Poly(e-Caprolactone) Nanofiber Scaffolds," Acta Biomaterialia, Vol. 6, No. 8, pp. 2949-2959. https://doi.org/10.1016/j.actbio.2010.02.006
  12. Wu, S., Wang, B., Zheng, G., Liu, S., Dai, K., Liu, C. and Shen, C., 2014, "Preparation and Characterization of Macroscopically Electrospun Polyamide 66 Nanofiber Bundles," Materials Letters, Vol. 124, pp. 77-80. https://doi.org/10.1016/j.matlet.2014.03.048
  13. Mohammadi, M., R., Bahrami, S., H. and Joghataei, M., T., 2013, "Fabrication of Novel Nanofiber Scaffolds from Gum Tragacanth/Poly(Vinyl Alcohol) for Wound Dressing Application: In Vitro Evaluation and Antibacterial Properties," Materials Science and Engineering: C, Vol. 33, No. 8, pp. 4935-4943. https://doi.org/10.1016/j.msec.2013.08.016
  14. Abdal, A., Tijing, L. D. and Lim, J. K., 2013, "Characterization of the Surface Biocompatibility of an Electrospun Nylon 6/CaP Nanofiber Scaffold Using Osteoblasts," Chemical Engineering Journal, Vol. 215-216, pp. 57-64. https://doi.org/10.1016/j.cej.2012.10.046
  15. Chaurey, V., Block, F., Su, Y., H., Chiang, P., C., Botchwey, E., Chou, C., F. and Swami, N., S., 2012, "Nanofiber Size-Dependent Sensitivity of Fibroblast Directionality to the Methodology for Scaffold Alignment," Acta Biomaterialia, Vol. 8, No. 11, pp. 3982-3990. https://doi.org/10.1016/j.actbio.2012.06.041

Cited by

  1. A Study on Fabrication of 3D Dual Pore Scaffold by Fused Deposition Modeling and Salt-Leaching Method vol.39, pp.12, 2015, https://doi.org/10.3795/KSME-A.2015.39.12.1229