DOI QR코드

DOI QR Code

Effect of microporosity on nitrogen-doped microporous carbons for electrode of supercapacitor

  • Received : 2014.03.21
  • Accepted : 2014.05.12
  • Published : 2014.07.31

Abstract

Nitrogen-doped microporous carbons were prepared using a polyvinylidene fluoride/melamine mixture. The electrochemical performance of the nitrogen-doped microporous carbons after being subjected to different carbonization conditions was investigated. The nitrogen to carbon ratio and specific surface area decreased with an increase in the carbonization temperature. However, the maximum specific capacitance of 208 F/g was obtained at a carbonization temperature of $800^{\circ}C$ because it produced the highest microporosity.

Keywords

References

  1. Inagaki M, Kang F, Toyoda M, Konno H. Carbon materials for electrochemical capacitors. In: Inagaki M, Kang F, Toyoda M, Konno H, eds. Advanced Materials Science and Engineering of Carbon, Butterworth-Heinemann, Boston, MA, 237 (2014). http://dx.doi.org/10.1016/B978-0-12-407789-8.00011-9.
  2. Frackowiak E, Beguin F. Carbon materials for the electrochemical storage of energy in capacitors. Carbon, 39, 937 (2001). http://dx.doi.org/10.1016/S0008-6223(00)00183-4.
  3. Ma C, Song Y, Shi J, Zhang D, Zhai X, Zhong M, Guo Q, Liu L. Preparation and one-step activation of microporous carbon nanofibers for use as supercapacitor electrodes. Carbon, 51, 290 (2013). http://dx.doi.org/10.1016/j.carbon.2012.08.056.
  4. Chen XY, Chen C, Zhang ZJ, Xie DH, Deng X, Liu JW. Nitrogendoped porous carbon for supercapacitor with long-term electrochemical stability. J Power Sources, 230, 50 (2013). http://dx.doi.org/10.1016/j.jpowsour.2012.12.054.
  5. Qin CL, Lu X, Yin GP, Bai XD, Jin Z. Activated nitrogen-enriched carbon/carbon aerogel nanocomposites for supercapacitor applications. Trans Nonferrous Metals Soc China, 19, s738 (2009). http://dx.doi.org/10.1016/S1003-6326(10)60142-2.
  6. Kim KS, Park SJ. Synthesis of nitrogen doped microporous carbons prepared by activation-free method and their high electrochemical performance. Electrochim Acta, 56, 10130 (2011). http://dx.doi.org/10.1016/j.electacta.2011.08.107.
  7. Li W, Chen D, Li Z, Shi Y, Wan Y, Wang G, Jiang Z, Zhao D. Nitrogen-containing carbon spheres with very large uniform mesopores: the superior electrode materials for EDLC in organic electrolyte. Carbon, 45, 1757 (2007). http://dx.doi.org/10.1016/j.carbon.2007.05.004.
  8. Guo P, Gu Y, Lei Z, Cui Y, Zhao XS. Preparation of sucrose-based microporous carbons and their application as electrode materials for supercapacitors. Microporous Mesoporous Mater, 156, 176 (2012). http://dx.doi.org/10.1016/j.micromeso.2012.02.043.
  9. Kim KS, Park SJ. Synthesis and high electrochemical capacitance of N-doped microporous carbon/carbon nanotubes for supercapacitor. J Electroanal Chem, 673, 58 (2012). http://dx.doi.org/10.1016/j.jelechem.2012.03.011.
  10. Hulicova D, Yamashita J, Soneda Y, Hatori H, Kodama M. Supercapacitors prepared from melamine-based carbon. Chem Mater, 17, 1241 (2005). http://dx.doi.org/10.1021/cm049337g.
  11. Chen J, Jia C, Wan Z. Novel hybrid nanocomposite based on poly(3,4-ethylenedioxythiophene)/multiwalled carbon nanotubes/graphene as electrode material for supercapacitor. Synth Met, 189, 69 (2014). http://dx.doi.org/10.1016/j.synthmet.2014.01.001.
  12. Ma C, Li Y, Shi J, Song Y, Liu L. High-performance supercapacitor electrodes based on porous flexible carbon nanofiber paper treated by surface chemical etching. Chem Eng J, 249, 216 (2014). http://dx.doi.org/10.1016/j.cej.2014.03.083.
  13. Kitajima M, Sato M, Nishide H. Preparation of flat porous carbon films from paper-thin wood shavings and control of their mechanical, electrical and magnetic properties. Carbon, 61, 260 (2013). http://dx.doi.org/10.1016/j.carbon.2013.05.003.
  14. Pan Y, Mei Z, Yang Z, Zhang W, Pei B, Yao H. Facile synthesis of mesoporous $MnO_2/C$ spheres for supercapacitor electrodes. Chem Eng J, 242, 397 (2014). http://dx.doi.org/10.1016/j.cej.2013.04.069.
  15. Lota G, Lota K, Frackowiak E. Nanotubes based composites rich in nitrogen for supercapacitor application. Electrochem Commun, 9, 1828 (2007). http://dx.doi.org/10.1016/j.elecom.2007.04.015.
  16. Chen T, Dai L. Carbon nanomaterials for high-performance supercapacitors. Mater Today, 16, 272 (2013). http://dx.doi.org/10.1016/j.mattod.2013.07.002.
  17. Swietlik U, Grzyb B, Torchala K, Gryglewicz G, Machnikowski J. High temperature ammonia treatment of pitch particulates and fibers for nitrogen enriched microporous carbons. Fuel Process Technol, 119, 211 (2014). http://dx.doi.org/10.1016/j.fuproc.2013.11.009.
  18. Su F, Zeng J, Yu Y, Lv L, Lee JY, Zhao XS. Template synthesis of microporous carbon for direct methanol fuel cell application. Carbon, 43, 2366 (2005). http://dx.doi.org/10.1016/j.carbon.2005.04.018.
  19. Lezanska M, Olejniczak A, Pacula A, Szymanski G, Wloch J. The influence of microporosity creation in highly mesoporous N-containing carbons obtained from chitosan on their catalytic and electrochemical properties. Catal Today, 227, 223 (2014). http://dx.doi.org/10.1016/j.cattod.2013.11.011.
  20. Lee SY, Park SJ. Carbon dioxide adsorption performance of ultramicroporous carbon derived from poly(vinylidene fluoride). J Anal Appl Pyrolysis, 106, 147 (2014). http://dx.doi.org/10.1016/j.jaap.2014.01.012.
  21. Zheng C, Zhou X, Cao H, Wang G, Liu Z. Synthesis of porous graphene/activated carbon composite with high packing density and large specific surface area for supercapacitor electrode material. J Power Sources, 258, 290 (2014). http://dx.doi.org/10.1016/j.jpowsour.2014.01.056.
  22. Chen XY, Xie DH, Chen C, Liu JW. High-performance supercapacitor based on nitrogen-doped porous carbon derived from zinc(II)-bis(8-hydroxyquinoline) coordination polymer. J Colloid Interface Sci, 393, 241 (2013). http://dx.doi.org/10.1016/j.jcis.2012.10.024.
  23. Si W, Zhou J, Zhang S, Li S, Xing W, Zhuo S. Tunable N-doped or dual N, S-doped activated hydrothermal carbons derived from human hair and glucose for supercapacitor applications. Electrochim Acta, 107, 397 (2013). http://dx.doi.org/10.1016/j.electacta.2013.06.065.
  24. Im JS, Park SJ, Lee YS. Preparation and characteristics of electrospun activated carbon materials having meso- and macropores. J Colloid Interface Sci, 314, 32 (2007). http://dx.doi.org/10.1016/j.jcis.2007.05.033.
  25. Khairnar V, Jaybhaye S, Hu CC, Afre R, Soga T, Sharon M, Sharon M. Development of supercapacitors using porous carbon materials synthesized from plant derived precursors. Carbon Lett, 9, 188 (2008). https://doi.org/10.5714/CL.2008.9.3.188
  26. Xu B, Hou S, Zhang F, Cao G, Chu M, Yang Y. Nitrogen-doped mesoporous carbon derived from biopolymer as electrode material for supercapacitors. J Electroanal Chem, 712, 146 (2014). http://dx.doi.org/10.1016/j.jelechem.2013.11.020.
  27. Mehmani A, Prodanovic M. The effect of microporosity on transport properties in porous media. Adv Water Resour, 63, 104 (2014). http://dx.doi.org/10.1016/j.advwatres.2013.10.009.
  28. Chen A, Liu C, Yu Y, Hu Y, Lv H, Zhang Y, Shen S, Zhang J. A co-confined carbonization approach to aligned nitrogen-doped mesoporous carbon nanofibers and its application as an adsorbent. J Hazard Mater, 276, 192 (2014). http://dx.doi.org/10.1016/j.jhazmat.2014.05.045.
  29. Guo Z, Zhou Q, Wu Z, Zhang Z, Zhang W, Zhang Y, Li L, Cao Z, Wang H, Gao Y. Nitrogen-doped carbon based on peptides of hair as electrode materials for surpercapacitors. Electrochim Acta, 113, 620 (2013). http://dx.doi.org/10.1016/j.electacta.2013.09.112.
  30. Lezanska M, Olejniczak A, Pacula A, Szymanski G, Wloch J. The influence of microporosity creation in highly mesoporous N-containing carbons obtained from chitosan on their catalytic and electrochemical properties. Catal Today, 227, 223 (2014). http://dx.doi.org/10.1016/j.cattod.2013.11.011.
  31. Del Regno A, Siperstein FR. Organic molecules of intrinsic microporosity: characterization of novel microporous materials. Microporous Mesoporous Mater, 176, 55 (2013). http://dx.doi.org/10.1016/j.micromeso.2013.03.041.
  32. Prasad KPS, Dhawale DS, Joseph S, Anand C, Wahab MA, Mano A, Sathish CI, Balasubramanian VV, Sivakumar T, Vinu A. Postsynthetic functionalization of mesoporous carbon electrodes with copper oxide nanoparticles for supercapacitor application. Microporous Mesoporous Mater, 172, 77 (2013). http://dx.doi.org/10.1016/j.micromeso.2013.01.023.

Cited by

  1. Hydrogen storage capacity of highly porous carbons synthesized from biomass-derived aerogels vol.16, pp.2, 2015, https://doi.org/10.5714/CL.2015.16.2.127
  2. A review: methane capture by nanoporous carbon materials for automobiles vol.17, pp.1, 2016, https://doi.org/10.5714/CL.2016.17.1.018
  3. Optimization of Kinetic Pore Size for Methane Storage Behavior of Pitch-based Activated Carbon Fibers vol.37, pp.6, 2016, https://doi.org/10.1002/bkcs.10779