DOI QR코드

DOI QR Code

Effect of Solid $CO_2$ Generator Treatment on Fruit Yield and Quality of Korean Melon(Cucumis melo var. hybrida)

탄산가스 발생제 처리가 참외의 품질 및 수량에 미치는 영향

  • Shin, Yong Seub (Seongju Fruit Vegetable Experiment Station, Gyeongsangbuk-do Agricultural Research & Extension Services) ;
  • Lee, Ji Eun (Seongju Fruit Vegetable Experiment Station, Gyeongsangbuk-do Agricultural Research & Extension Services) ;
  • Kim, Min Ki (Seongju Fruit Vegetable Experiment Station, Gyeongsangbuk-do Agricultural Research & Extension Services) ;
  • Cheung, Joung Do (Seongju Fruit Vegetable Experiment Station, Gyeongsangbuk-do Agricultural Research & Extension Services) ;
  • Do, Han Woo (Seongju Fruit Vegetable Experiment Station, Gyeongsangbuk-do Agricultural Research & Extension Services) ;
  • Park, Jong Uk (Seongju Fruit Vegetable Experiment Station, Gyeongsangbuk-do Agricultural Research & Extension Services) ;
  • Kim, Jwoo Hwan (Seongju Fruit Vegetable Experiment Station, Gyeongsangbuk-do Agricultural Research & Extension Services) ;
  • Park, Jong Tae (Seongju Fruit Vegetable Experiment Station, Gyeongsangbuk-do Agricultural Research & Extension Services) ;
  • Lee, Soo Tak ;
  • Suh, Jun Kyu (Deparment of Horticultural science, Kyungpook National University)
  • 신용습 (경상북도농업기술원성주과채류시험장) ;
  • 이지은 (경상북도농업기술원성주과채류시험장) ;
  • 김민기 (경상북도농업기술원성주과채류시험장) ;
  • 정종도 (경상북도농업기술원성주과채류시험장) ;
  • 도한우 (경상북도농업기술원성주과채류시험장) ;
  • 박종욱 (경상북도농업기술원성주과채류시험장) ;
  • 김주환 (경상북도농업기술원성주과채류시험장) ;
  • 박종태 (경상북도농업기술원성주과채류시험장) ;
  • 이수탁 (참외마이스터) ;
  • 서전규 (경북대학교 원예과학과)
  • Received : 2014.04.30
  • Accepted : 2014.05.23
  • Published : 2014.06.30

Abstract

The objective of this study was to examine the changes in carbon dioxide ($CO_2$) concentration due to application of solid $CO_2$ generator (Tansansol) in plastic greenhouses during winter cultivation of Korean melon. The experimental treatments consisted of four levels, namely, 0 (control) 10, 20 and 30bags with solid $CO_2$ generator per $600m^2$ of plastic greenhouse. $CO_2$ concentration in plots with solid gas generators was higher by 3.0-3.2% compared to control. Fruit weight, sugar content and color parameter were also enhanced due to application of solid $CO_2$ generator. The fraction of fermentated and unmarketable fruits were decreased by 2.9-3.9% and 5.4-7.3%, respectively, in plots where solid $CO_2$ generators were applied. The marketable yield increased by 10.3, 14.8 and 16.2% in plots with 10, 20 and 30bags with $CO_2$ generators, respectively. As a result, $CO_2$ concentration within the greenhouses was increased by applying $CO_2$ generators and it is positively affected the rate of photosynthesis.

본 연구는 저온기 시설참외 재배 시 탄산가스 발생제(탄산솔)의 사용효과를 구명하기 위하여 수행하였다. $600m^2$ 크기 하우스에 탄산가스 발생제(100g/1봉)를 10, 20 및 30봉을 각각 매달아 무처리와 비교하였다. 그 결과 무처리구에 비해 처리구에서 탄산가스 농도가 3.0~3.2배정도 높았다. 그리고 무처리구에 비해 처리구에서 과중이 20.2~22.0g 더 무겁고, 태좌부 당도가 $1.5{\sim}2.1^{\circ}Brix$ 더 높았으며, 색도(a값)도 우수하였다. 또한 탄산가스 발생제 처리한 것이 무처리에 비해 발효과율 및 기형과율이 각각 2.9~3.9%, 5.4~7.3% 감소하였고, 상품과율은 8.7~10.3% 증가하였다. 10a당 상품과 수량은 무처리구의 385.8kg에 비하여 탄산가스 발생제 10, 20 및 30봉 처리한 것이 각각 10.3%, 14.8%, 16.2% 증가하였다. 이상의 결과를 보아, 저온기 참외 시설재배시 탄산가스 발생제를 시용함으로써 탄산가스 농도가 높아져 광합성이 촉진되어 품질이 향상되고 수량이 증가한 것으로 판단되었다.

Keywords

References

  1. Arp, W.J. 1991. Effects of source-sink relations on photosynthetic acclimation to elevated $CO_{2}$. Plant, Cell and Environment 14:869-875. https://doi.org/10.1111/j.1365-3040.1991.tb01450.x
  2. Behboudian, M.H. and R. Lar. 1994. Carbon dioxide enrichment in 'Virosa' tomato plant : responses to enrichment duration and to temperature. Hort Science 29(12)1456-1459.
  3. Butter, W.L. 1966. Fluorescent yield in photosynthetic systems and its relation to electron transport. Curr. Top. Bioenerg.. 1:49-73. https://doi.org/10.1016/B978-1-4831-9969-6.50008-1
  4. Cure, J.D. 1986. Crop responses to carbon dioxide doubling : a literature survey. Agricultural and Forest Meteorology 38:127-145. https://doi.org/10.1016/0168-1923(86)90054-7
  5. Farrar, J., C. Pollock, and J. Gallagher. 2000. Sucrose and the integration of metabolism in vascular plants. Plant Science 154:1-11. https://doi.org/10.1016/S0168-9452(99)00260-5
  6. Fierro, A., N. Tremblay, and A. Gosselin. 1994. Supplemental carbon dioxide and light improved tomato and pepper seeding growth and yield. Hort Science 29(3):152-154.
  7. Hennessey, L.T. and C.B. Field, 1991. Circadian rhythms in photosynthesis. Plant Physiol. 96:831-836. https://doi.org/10.1104/pp.96.3.831
  8. Islam, S., T. Matsui, and Y. Yoshida. 1996. Effect of carbon dioxide enrichment on physico-chemical and enzymatic changes in tomato fruits at various stages of maturity. Scientia Horticulturae 65:137-149. https://doi.org/10.1016/0304-4238(95)00867-5
  9. Kang, I.K., S.Y. Lee, H.J. Kim, H. C, and B.Y. Jeong. 2007. Effects of $CO_{2}$ enrichnent concentration and duration on growth of bell pepper. J. Bio-Env. Con. 16(4)352-357. (in Korean).
  10. Kautsky, A. and A. Hirsh. 1931. Neue versuche zur kohlensaureassimilation. Naturqissenschaften. 19:964.
  11. Kooten, O. and J.F.H. Snel. 1990. The use of chlorophyll fluorescent nomemclature in plant stress physiology. Photosynth. Res. 25:147-150. https://doi.org/10.1007/BF00033156
  12. Mitchell, R.A.C., J.C. Theobald, M.A.J. Parry, and D.W. Lawlor. 2000. Is there scope for improving balance between RuBP-regeneration and carboxylation capacities in wheat at elevated $CO_{2}$. Journal of Experimental Botany 51:391-397. https://doi.org/10.1093/jexbot/51.suppl_1.391
  13. Nederhoff, E.M., A.A. Rijsdijk, and R. Graaf. 1992. Leaf conductance and rate of crop transpiration of greenhouse grown sweet pepper (Capsicum annuum L.) as affected by carbon dioxide. Scientia Horticulturae 52:283-301. https://doi.org/10.1016/0304-4238(92)90030-G
  14. Nelson,P.V. 1992. Greenhouse operation and management. 5th ed. Prentice Hall, Upper Saddle River, NJ, USA. p. 375-376.
  15. Reddy, K.R. and D. Zhao. 2005. Interactive effects of elevated $CO_{2}$ and potassium deficiency on photosynthesis, growth and biomass partitioning of cotton. Field Crops Research 94:201-213. https://doi.org/10.1016/j.fcr.2005.01.004
  16. Resh, H.M. 1995. Hydroponic food production : a definitive guidebook of soilless food-growing methods. 5th ed. Woodbridge Press Publishing Company. p. 32-34.
  17. Sage, R.F. and R.C. John. 2001. Effects of low atmospheric $CO_{2}$ on plants : more than a thing of the past. Plant Science 6(1):18-24. https://doi.org/10.1016/S1360-1385(00)01813-6
  18. Shin, Y.S., H.W. Do, S.G. Bae, S.K. Choi, and B.S. Choi. 1998. Effect of $CO_{2}$ Enrichment on quality and yield of oriental melon(Cucumis melo L.var. makuwa Mak.) in greenhouse. RDA Journal of Agro-Environment Science. 40(2):107-110. (in Korean).
  19. Yoo, S.Y., K.C. Eom, S.H. Park, and T.W. Kim. 2012. Possibility of drought stress indexing by chlorophyll fluorescent imaging technique in red pepper. Korea. J. Soil Sci. Fret. 45(5):676-682. (in Korean).
  20. Walter, R.G., and P. Horton. 1991. Resolution of components of non-photochemical chlorophyll fluorescent quenching in barley leaves. Photosynth. Res. 27:147-150.