DOI QR코드

DOI QR Code

Development of Oriental Melon Harvesting Robot in Greenhouse Cultivation

시설재배 참외 수확 로봇 개발

  • Ha, Yu Shin (Department of Bio Industrial Machinery Engineering, College of Agriculture and Life Science, Kyungpook National University) ;
  • Kim, Tae Wook (Department of Precision Mechanical Engineering, College of Science and Technology, Kyungpook National University)
  • 하유신 (경북대학교 생물산업기계공학과) ;
  • 김태욱 (경북대학교 정밀기계공학과)
  • Received : 2014.05.19
  • Accepted : 2014.06.10
  • Published : 2014.06.30

Abstract

Oriental melon (Cucumis melo var. makuwa) should be cultivated on the soil and be harvested. It is difficult to find because it is covered with leaves, and furthermore, it is very hard to grip it due to its climbing stems. This study developed and tested oriental melon harvesting robots such as an end-effector, manipulator and identification device. The end effector is divided into a gripper for harvest and a cutter for stems. In addition, it was designed to control the gripping and cutting forces so that the gripper could move four fingers at the same time and the cutter could move back and forth. The manipulator was designed to realize a 4-axis manipulator structure to combine orthogonal coordinate-type and shuttle-type manipulators with L-R type model to rotate based on the central axis. With regard to the identification device, oriental melon was identified using the primary identification global view camera device and secondary identification local view camera device and selected in the prediction of the sugar content or maturity. As a result of the performance test using this device, the average harvest time was 18.2 sec/ea, average pick-up rate was 91.4%, average damage rate was 8.2% and average sorting rate was 72.6%.

참외 재배환경은 토양 위의 수평바닥에서 재배된 것을 수확하여야 하며, 참외가 잎으로 덮여져 있어 인식이 어렵고, 덩굴성 줄기로 인해 참외를 그립하기에도 매우 불리하다. 이러한 재배환경에 적합하도록 엔드이펙트, 머니퓰레이터, 인식장치 등의 참외 수확 로봇을 개발하였고 이를 시험하였다. 엔드이펙터는 수확물을 잡기 위한 그립퍼와 줄기를 절단하는 커터로 구분되며, 그립퍼는 4개의 핑거가 동시에 구동하고, 커터는 2개로 전후진 동작이 되도록 설계하여 파지력과 절단력을 제어할 수 있도록 하였다. 머니퓰레이터는 중심축을 기준으로 회전을 하는 L-R형 모델에 직교 좌표형과 셔틀형 머니퓰레이터를 조합한 4축 매니플레이트 구조로 설계하였다. 인식장치는 1차 인식장치인 GVC와 2차 인식장치인 LVC를 이용하여 참외를 식별하고 그 중에서 당도나 숙도를 예측하여 선별하였다. 이 장치를 이용하여 로봇의 성능시험을 한 결과 수확시간은 평균 18.2sec/ea, 픽업율은 평균 91.4%, 손상율은 평균 8.2%, 선별율은 평균 72.6%로 나타났다.

Keywords

References

  1. Bae, G.J., K.S. Lee, Y.G. Kong, G.J. Oh, and S.J. Lee. 2011. The prevalence of musculoskeletal symptoms and the ergonomic risk factors among oriental melon-growing farmers. The Korean Society Of Occupational And Environmental Medicine 23(1):1-8 (In Korean).
  2. Ha, Y.S. and T.W. Kim. 2013. Design factor analysis of endeffector for oriental melon harvesting robot in greenhouse cultivation. Protected Hoticulture and Plant Factory 22(3):1- 7 (In Korean). https://doi.org/10.12791/KSBEC.2013.22.1.001
  3. Hwang, H., S.C. Kim, and D.Y. Choi. 2003. Facilities for bioproduction and environmental engineering : Development of multi-functional tele-operative modular robotic system for watermelon cultivation in greenhouse. Journal of Biosystems Engineering 28(6):517-522 (In Korean). https://doi.org/10.5307/JBE.2003.28.6.517
  4. Kim, S.C., H. Hwang, Y.B. Lee, S.C. Kim, D.H. Im, and H.G. Choi. 2007. Development of strawberry harvesting robot under bench type cultivation (prototype 2). Journal of Biosystems Engineering 12(1):111-117 (In Korean).
  5. Kondo, N., Y. Shibano, T. Fujiura, K. Mohri, M. Monta, and H. Yamada. 1995. End-effectors for petty-tomato harvesting robot. Acta Horticulturae 399:239-246.
  6. Kweon, G.Y., S.R. Jung, C.H. Kang, K.S. Han, and H.G. Choi. 2001. Development of a worker-following transport vehicle for greenhouse use. Proceedings of Bio-Environment Con- trol 10(2):46-51 (In Korean).
  7. Lee, D.W., H.T. Kim, B.R. Min, W. Kim, and D.W. Kim. 2000. Development of a end-effector for grapes harvester. Proceedings of the Bio-Environment Control 9(2):98-103 (In Korean).
  8. Min, B.R., J.H. Mun, and D.W. Lee. 2003a. Development of the manipulator of a cucumber robotic harvester. Journal of Bio-Environment Control 12(2):57-62 (In Korean).
  9. Min, B.R., J.H. Mun, and D.W. Lee. 2003b. Development of an end-effector for cucumber robotic harvester. Journal of Bio-Environment Control 12(2):63-67 (In Korean).
  10. Min, B.R. and D.W. Lee. 2004a. Development of the robot manipulator for kinematies. Journal of Bio-Environment Control 13(1):1-7 (In Korean).
  11. Min, B.R. and D.W. Lee. 2004b. The end-effector of a cucumber robot. Journal of Biosystems Engineering 29(3):281-286 (In Korean). https://doi.org/10.5307/JBE.2004.29.3.281
  12. Monta, M., N. Kondo, and K.C. Ting. 1998. End-effectors for tomato harvesting robot. Artificial Intelligence Review 12:11-25. https://doi.org/10.1023/A:1006595416751
  13. Son, J.R., C.H. Kang, K.S. Han, S.L. Chung, and G.Y. Kwon. 2000. Development of tomato harvesting robot - 3-D detection technique for identifiying tomatoes -. Journal of Biosystems Engineering 25(5):415-420 (In Korean).
  14. Van Henten, E.J., J. Hemming, B.A.J. van Tuijl, J.G. Kornet, J. Meuleman, J. Bontsema, and E.A. van Os. 2002. An autonomous robot for harvesting cucumbers in greenhouses. Autonomous Robots 13(3):241-258. https://doi.org/10.1023/A:1020568125418
  15. Yamamoto, S., S. Hayashi, H. Yoshida, K. Kobayashi, and K. Shigematsu. 2008. Development of an end effector for a strawberry-harvesting robot. Acta Horticulturae 801(1):565-572.