DOI QR코드

DOI QR Code

Microwave assisted preparation of sodium dodecyl sulphate (SDS) modified ordered nanoporous carbon and its adsorption for MB dye

  • Moradi, S.E. (Faculty of Science, Islamic Azad University)
  • Received : 2012.08.28
  • Accepted : 2013.04.02
  • Published : 2014.01.25

Abstract

Highly ordered mesoporous carbon (OMC) has been prepared and modified with a anionic surfactant sodium dodecyl sulphate (SDS) by microwave heating technique and used as an efficient sorbent for methylene blue (MB) dye removal from wastewater. The structural order and textural properties of the adsorbents was studied by XRD, BET, FT-IR, Raman and TGA analyses. Adsorption experiments were conducted in batch mode with the variables such as amount of adsorbent, agitation speed, contact time, temperature, initial solution concentration and solution pH. The MB dye removal for microwave and impregnation methods modified SDS-OMC and OMC were found to be 95.3, 88.4 and 68%, respectively.

Keywords

References

  1. K. Ravikumar, B. Deebika, K. Balu, Journal of Hazardous Materials 122 (2005) 75-83. https://doi.org/10.1016/j.jhazmat.2005.03.008
  2. J.W. Lee, S.P. Choi, R. Thiruvenkatachari, W.G. Shim, H. Moon, Dyes and Pigments 69 (2006) 196-203. https://doi.org/10.1016/j.dyepig.2005.03.008
  3. J.R. Easton, P. Cooper, Colour in Dyehouse Effluent, The Society of Dyers and Colorists, Alden, Oxford, 19959-21.
  4. P.K. Dutta, Indian Journal of Environmental Protection 14 (1994) 443-446.
  5. K.C. Chen, J.Y. Wu, C.C. Huang, Y.M. Liang, S.C.J. Hwang, Journal of Biotechnology 101 (2003) 241-252. https://doi.org/10.1016/S0168-1656(02)00362-0
  6. D. Ghosh, K.G. Bhattacharyya, Applied Clay Science 20 (2002) 295-300. https://doi.org/10.1016/S0169-1317(01)00081-3
  7. M. Mitchell, W.R. Ernst, G.R. Lightsey, Environmental Contamination and Toxicology 19 (1978) 307-311. https://doi.org/10.1007/BF01685803
  8. W.T. Tsai, C.Y. Chang, M.C. Lin, S.F. Chien, H.F. Sun, M.F. Hsieh, Chemosphere 45 (2001) 51-58. https://doi.org/10.1016/S0045-6535(01)00016-9
  9. N. Zhao, N. Wei, J. Li, Z. Qiao, J. Cui, F. He, Journal of Chemical Engineering 115 (2005) 133-138. https://doi.org/10.1016/j.cej.2005.09.017
  10. C.A. Basar, A. Karagunduz, B. Keskinler, A. Cakici, Applied Surface Science 218 (2003) 170-175. https://doi.org/10.1016/S0169-4332(03)00576-2
  11. J. Pattanayak, K. Mondal, S. Mathew, S.B. Lalvani, Carbon 38 (2000) 589-596. https://doi.org/10.1016/S0008-6223(99)00144-X
  12. H. Tamai, T. Yoshida, M. Sasaki, H. Yasuda, Carbon 37 (1999) 983-989. https://doi.org/10.1016/S0008-6223(98)00294-2
  13. R. Ryoo, S.H. Joo, M. Kruk, M. Jaroniec, Advanced Materials 13 (2001) 677-681. https://doi.org/10.1002/1521-4095(200105)13:9<677::AID-ADMA677>3.0.CO;2-C
  14. S.H. Joo, S.J. Choi, I. Oh, J. Kwak, Z. Liu, O. Terasaki, R. Ryoo, Nature 412 (2001) 169-172. https://doi.org/10.1038/35084046
  15. R. Ryoo, S.H. Joo, S. Jun, Journal of Physical Chemistry B 103 (1999) 7743-7746. https://doi.org/10.1021/jp991673a
  16. M. Anbia, S.E. Moradi, Chemical Engineering Journal 148 (2009) 452-458. https://doi.org/10.1016/j.cej.2008.09.032
  17. K. Baek, H.H. Lee, J.W. Yang, Desalination 158 (2003) 157-166. https://doi.org/10.1016/S0011-9164(03)00446-6
  18. K. Baek, J.W. Yang, Journal of Hazardous Materials 108 (2004) 119-123. https://doi.org/10.1016/j.jhazmat.2004.02.001
  19. K. Baek, J.W. Yang, Chemosphere 57 (2004) 1091-1097. https://doi.org/10.1016/j.chemosphere.2004.08.017
  20. Y. Shao, L. Wang, J. Zhang, M. Anpo, Microporous and Mesoporous Materials 109 (2005) 20835-20841.
  21. R. Crisafully, M.A. Milhome, R.M. Cavalcante, E.R. Silveira, D. Keukeleire, F. Nascimento, Bioresource Technology 99 (2008) 4515-4519. https://doi.org/10.1016/j.biortech.2007.08.041
  22. V.K. Garg, R. Gupta, A.B. Yadav, R. Kumar, Bioresource Technology 89 (2003) 121-124. https://doi.org/10.1016/S0960-8524(03)00058-0
  23. V.K. Garg, M. Amita, R. Kumar, R. Gupta, Dyes and Pigments 63 (2004) 243-250. https://doi.org/10.1016/j.dyepig.2004.03.005
  24. M. Ozacar, A.I. Sengil, Bioresource Technology 96 (2005) 791-795. https://doi.org/10.1016/j.biortech.2004.07.011
  25. D. Kavitha, C. Namasivayam, Bioresource Technology 98 (2007) 14-21. https://doi.org/10.1016/j.biortech.2005.12.008
  26. J.P. Kushwaha, V.C. Srivastava, I.D. Mall, Bioresource Technology 101 (2010) 3474-3483. https://doi.org/10.1016/j.biortech.2010.01.002
  27. S. Lagergren, Zur Theorie der Sogenannten Adsorption Geloster Stoffe, vol. 24, Kungliga Svenska Vetenskapsakademiens, Handlingar, 1898pp. 1-39.
  28. Y.S. Ho, Adsorption of heavy metals from waste streams, Peat Ph.D. Thesis, University of Birmingham, Birmingham, UK, 1995.
  29. A. Sharma, K.G. Bhattacharyya, Adsorption 10 (2004) 327-338.
  30. K.Y. Foo, B.H. Hameed, Bioresource Technology 103 (2012) 398-404. https://doi.org/10.1016/j.biortech.2011.09.116
  31. A. Kara, B. Acemioglu, M.H. Alma, M. Cebe, Journal of Applied Polymer Science 101 (2006) 2838-2846. https://doi.org/10.1002/app.23055
  32. M. Dogan, M. Alkan, Y. Onganer, Water, Air, and Soil Pollution 120 (2000) 229-248. https://doi.org/10.1023/A:1005297724304

Cited by

  1. A review: methane capture by nanoporous carbon materials for automobiles vol.17, pp.1, 2014, https://doi.org/10.5714/cl.2016.17.1.018
  2. Highly effective adsorption performance of carboxymethyl cellulose microspheres crosslinked with epichlorohydrin vol.134, pp.2, 2014, https://doi.org/10.1002/app.44363
  3. Computation of adsorption parameters for the removal of dye from wastewater by microwave assisted sawdust: Theoretical and experimental analysis vol.50, pp.None, 2017, https://doi.org/10.1016/j.etap.2017.01.014
  4. Microwave‐Assisted Solvothermal One‐Pot Synthesis of RuO 2 Nanoparticles: First Insights of Its Activity Towards Oxygen and Chlorine Evolution Reactions vol.3, pp.45, 2014, https://doi.org/10.1002/slct.201802695
  5. Use of an anionic surfactant for the sorption of a binary mixture of antibiotics from aqueous solutions vol.40, pp.25, 2014, https://doi.org/10.1080/09593330.2018.1472301
  6. Removal of strontium from aqueous solutions by sodium dodecyl sulfate-modified palygorskite vol.321, pp.1, 2019, https://doi.org/10.1007/s10967-019-06581-y
  7. Adsorptive Removal of Recalcitrant Auramine-O Dye by Sodium Dodecyl Sulfate Functionalized Magnetite Nanoparticles: Isotherm, Kinetics, and Fixed-Bed Column Studies vol.19, pp.1, 2020, https://doi.org/10.1142/s0219581x19500042
  8. An overview and outlook on gas adsorption: for the enrichment of low concentration coalbed methane vol.55, pp.6, 2014, https://doi.org/10.1080/01496395.2019.1585454
  9. Facile Method by Bentonite Treated with Heat and Acid to Enhance Pesticide Adsorption vol.11, pp.11, 2014, https://doi.org/10.3390/app11115147
  10. Optimization of cationic dye removal using a high surface area-activated carbon from water treatment sludge vol.44, pp.1, 2014, https://doi.org/10.1007/s12034-020-02333-x
  11. A comparative study on the performance of photo/sono/peroxone processes for the removal and mineralization of reactive dye red 198 from aquatic environments vol.236, pp.1, 2014, https://doi.org/10.1515/zpch-2021-3008