DOI QR코드

DOI QR Code

The effect of temperature and hydrodynamics on carbon steel corrosion and its inhibition in oxygenated acid-salt solution

  • Hasan, Basim O. (Chemical Engineering Department, Alnahrain University) ;
  • Sadek, Sara A. (Chemical Engineering Department, Alnahrain University)
  • Received : 2012.10.27
  • Accepted : 2013.03.29
  • Published : 2014.01.25

Abstract

Corrosion of carbon steel in hydrochloric acid (HCl)-sodium sulphate ($Na_2SO_4$) solution mixture was investigated using rotating cylinder electrode (RCE) for a range of rotation velocity, 0-2000 rpm, solution temperature of $32-52^{\circ}C$, and different oxygen concentrations. The corrosion rat was determined by using both weight loss method and electrochemical polarization technique. Different acid and salt concentrations were used ranged from 0.01 to 0.2 M for salt and 0.5 to 5% for acid. The conjoint effect of increased oxygen concentration and high rotational velocity was studied based on experimental measurements of $O_2$ concentration. The effects of operating conditions on indole and cetyl trimethyl ammonium bromides (CTAB) inhibition efficiency were also studied and discussed. The results showed that increasing the rotational velocity leads to an increase in the corrosion rate depending on the concentration of salt and acid. Increasing the temperature and acid concentrations leads to an increase in the corrosion rate while the corrosion rate exhibited unstable trend with salt concentration leads to change of corrosion. It is found that increasing $O_2$ concentration leads to a considerable increase in the corrosion rates especially at high rotational velocity. Indole and CTAB inhibitors exhibited very good inhibition efficiency in most conditions investigated with the former exhibited better inhibition efficiency arriving up to 87% at low rotational velocities. The inhibition efficiency of both inhibitors was found to decrease with increasing velocity. In addition, indole inhibitor reveals excellent inhibition efficiency even at high temperatures while CTAB efficiency decreased appreciably with temperature increase.

Keywords

References

  1. G.Y. Elewady, A.S. Fouda, M.N. El-Haddad, Canadian Journal on Scientific and Industrial Research 2 (1) (2011).
  2. M.N. Katariya, A.K. Jana, P.A. Parikh, Journal of Industrial and Engineering Chemistry 19 (2013) 286. https://doi.org/10.1016/j.jiec.2012.08.013
  3. N.O. Egbedi, K.E. Essine, I.B. Obot, E.E. Ebenso, International Journal of Electrochemical Science 6 (2011) 913.
  4. N.S. Bornstein, M.A. Decrescente, Metallurgical Transactions 2 (1971) 2875. https://doi.org/10.1007/BF02813266
  5. J. Goebel, A.F.S. Pettit, G.W. Goward, Metallurgical Transactions 4 (1973) 261. https://doi.org/10.1007/BF02649626
  6. J. Stringer, High Temperature Corrosion and Materials Application, vol. 9, ASM International, USA, 2007, pp 249.
  7. W. Huijbregts, Materials Performance 3 (2007) 23.
  8. M.G. Fontana, Corrosion Engineering, 3rd ed., McGraw-Hill Book Company, New York, 1986.
  9. R.B. Bird, W.E. Stewart, E.N. Lightfoot, Transport Phenomena, 2nd ed., John Wiley & Sons, New York, 2002.
  10. M.A. Amin, M.A. Ahmed, H.A. Arida, T. Arslan, M. Saracoglu, F. Kandemirli, Corrosion Science 53 (2011) 540. https://doi.org/10.1016/j.corsci.2010.09.019
  11. W. Lyon, Standard Handbook of Petroleum and Natural Gas Engineering, vol. 1, Gulf Company, Houston, TX, 1996.
  12. R.S. Brodkey, H.C. Hershey, Transport Phenomena, 2nd ed., McGraw Hill, New York, 1989.
  13. R. Solmaz, G. Kardas, B. Yazici, M. Erbil, Protection of metals and physical chemistry of surfaces, Protec. Met. 41 (2005) 581. https://doi.org/10.1007/s11124-005-0083-3
  14. F. Bentiss, M. Lebrini, H. Vezin, M. Lagrenee, Materials Chemistry and Physics 87 (2004) 18. https://doi.org/10.1016/j.matchemphys.2004.05.040
  15. W.L. He, C. Pei, B. Hou, Electrochimica Acta 52 (2007) 6386. https://doi.org/10.1016/j.electacta.2007.04.077
  16. G. Avci, Engineering Aspects 317 (2008) 730. https://doi.org/10.1016/j.colsurfa.2007.12.009
  17. M.A. Malik, M.A. Hashim, F. Nabi, S.A. AL-Thabaiti, Z. Khan, International Journal of Electrochemical Science 6 (2011) 1927.
  18. Monika, W.A. Siddique, A. Dubey, Electrochemical Acta 23 (2005) 445.
  19. M.L. Free, Understanding the effect of surfactant aggregation on corrosion inhibition, Corrosion Science 44 (2002) 2865-2870. https://doi.org/10.1016/S0010-938X(02)00080-X
  20. G. Moretti, G. Quartarone, A. Tassan, A. Zingales, Werkstoffe und Korrosion 45 (1994) 641. https://doi.org/10.1002/maco.19940451203
  21. G. Quartarone, L. Banaldo, C. Tartato, Applied Surface Science 252 (2006) 8251. https://doi.org/10.1016/j.apsusc.2005.10.051
  22. S. Ramesh, S. Rajeswari, Electrochimica Acta 49 (2004) 811. https://doi.org/10.1016/j.electacta.2003.09.035
  23. B.K. Mahato, C.Y. Cha, W. Shemlit, Corrosion Science 20 (1980) 421. https://doi.org/10.1016/0010-938X(80)90010-4
  24. B.O. Hasan, Heat, mass, and momentum analogies to estimate corrosion rates under turbulent flow conditions, Ph.D. Thesis, Department of Chemical Engineering, University of AL-Nahrain, Baghdad, 2003.
  25. Q.J.M. Slaiman, B.O. Hasan, The Canadian Journal of Chemical Engineering 88 (2010) 1114. https://doi.org/10.1002/cjce.20383
  26. D.J. Pickett, K.L. Ong, Electrochimica Acta 19 (1974) 875. https://doi.org/10.1016/0013-4686(74)85036-X
  27. A.A. Khadom, A.S. Yaro, A.H. Kadum, A.S. AlTaie, A.Y. Musa, American Journal of Applied Sciences 6 (2009) 1403. https://doi.org/10.3844/ajassp.2009.1403.1409
  28. N.R.K. Vilambi, D.T. Chin, Electrochemical Society 134 (1) (1982) 2501.
  29. M. Lee, Water Research 36 (2002) 2140. https://doi.org/10.1016/S0043-1354(01)00421-3
  30. A.C.V.S. Parshin, Y.A. Kolotyrkin, Corrosion Science 22 (9) (1982) 845. https://doi.org/10.1016/0010-938X(82)90080-4
  31. R.W. Revie, H.H. Uhlig, Corrosion and Corrosion Control an Introduction to Corrosion Science and Engineering, 4th ed., John Wiley & Sons, Inc., Hoboken, NJ, 2008.
  32. Q.J.M. Slaiman, B.O. Hasan, H.M. Turkee, The 2nd Regional Conference for Engineering Science, College of Engineering, Al-Nahrain University, 2010.
  33. A.Y. Musa, A.H. Kadhum, A. Muhamad, International Journal of Electrochemical Science 5 (2010) 1911.
  34. A.Y. Musa, A. Mohamad, A.H. Khadum, M.S. Takrif, W. Ahmoda, Journal of Industrial and Engineering Chemistry 18 (2010) 551.
  35. Z.A. Foroulis, Corrosion 35 (1979) 340. https://doi.org/10.5006/0010-9312-35.8.340
  36. P.V. Seheers, the effects of flow velocity and pH on the corrosion rate of mild steel in a synthetic minewater, J. S. Afr. Inst. Min. Metall. 92 (1992) 275-281.
  37. B. Poulson, Corrosion Science 35 (1993) 655. https://doi.org/10.1016/0010-938X(93)90201-Q
  38. T.K. Ross, G.C. Wood, I. Mahmud, Journal of the Electrochemical Society 113 (1966) 334. https://doi.org/10.1149/1.2423957
  39. E. Osarolube, I.O. Owate, N.C. Oforka, Scientific Research and Essay 3 (2008) 224.
  40. S.H. Alwash, V. Ashworth, M. Shirkhanzadeh, G.E. Thompson, Corrosion Science 27 (1987) 1301. https://doi.org/10.1016/0010-938X(87)90127-2
  41. D. Hawker, B. Karnchanasest, Journal of Environmental Research 32 (1) (2010) 1.
  42. R.J. Lee, J.R. Saylor, International Journal of Heat and Mass Transfer 53 (2010) 3405. https://doi.org/10.1016/j.ijheatmasstransfer.2010.03.037
  43. L.L. Shreir, R.A. Jarman, G.T. Burstein, 3rd ed., Corrosion Metal/Environment Reactions, vol. I, Butterworth-Heinemann, Great Britain, 2000.
  44. H. Al-Sehaibani, Materialwissenschaft und Werkstofftechnik 31 (2000) 1060. https://doi.org/10.1002/1521-4052(200012)31:12<1060::AID-MAWE1060>3.0.CO;2-K
  45. R.G. Martinez, J.M. Flores, R.D. Romero, J.G. Llongueras, Afinidad: Revista de Qumica Teorica y Aplicada, LXII (2005) 448-454.
  46. S.A. Sadek, B.O. Hasan, First National Conference for Engineering Science, 2012.
  47. B.A. Ita, O.E. Offiong, Global Journal of Pure and Applied Sciences 5 (1997) 497.
  48. A.L. Onuchukwu, S.P. Trasatti, Corrosion Science 36 (1994) 185.
  49. A.Y. Musa, R.T.T. Jalgham, A.B. Mohamad, Corros. Sci. 56 (2012) 176-183. https://doi.org/10.1016/j.corsci.2011.12.005
  50. E.A. Noor, A.H. Al-Moubaraki, International Journal of Electrochemical Science 3 (2008) 806
  51. E.A. Noor, A.H. Al-Moubaraki, Corrosion Science 44 (2002) 2865. https://doi.org/10.1016/S0010-938X(02)00080-X
  52. A. Popova, M. Christov, A. Zwetanova, Corrosion Science 49 (2007) 2131. https://doi.org/10.1016/j.corsci.2006.10.021
  53. M. Lebrini, F. Robert, H. Vezin, C. Roos, Corrosion Science 52 (2010) 3367. https://doi.org/10.1016/j.corsci.2010.06.009
  54. A.A. Ismail, S.H. Sanad, A.A. El-Meligi, Journal of Materials Sciences and Technology 16 (2000) 397.
  55. A.A. Maghraby, T.Y. Soror, Advances in Applied Science Research 1 (2010) 156.
  56. A.A. Maghraby, T.Y. Soror, Advances in Applied Science Research 1 (2010) 143.
  57. M. Mobin, M. Parveen, M. Alam Khan, Portugaliae Electrochimica Acta 29 (2011) 391. https://doi.org/10.4152/pea.201106391
  58. Q.J.M. Slaiman, B.O. Hasan, H.A. Mahmood, The Canadian Journal of Chemical Engineering 86 (2008) 240. https://doi.org/10.1002/cjce.20027
  59. A.Y. Musa, A.H. Kadhum, A. Mohamad, A. Daud, M.S. Takriff, S.K. Kamarudin, N. Muhamad, International Journal of Electrochemical Science 4 (2009) 707.
  60. D.M. Ortega-Toledo, J.G. Gonzalez-Rodriguez, M. Casales, A. Caceres, L. Martinez, International Journal of Electrochemical Science 6 (2011) 778.
  61. A. Popova, Corrosion Science 49 (2007) 2144. https://doi.org/10.1016/j.corsci.2006.10.020
  62. S.H. Sanad, A.A. Ismail, A.A. El-Meligi, Journal of Materials Sciences and Technology 16 (2000) 291. https://doi.org/10.1179/026708300101507857
  63. N.H. Huynh, The inhibition of copper corrosion in aqueous environments with heterocyclic compounds, Ph.D., Queensland University of Technology, 2004.
  64. J.O'M. Bockris, B. Young, Journal of the Electrochemical Society 138 (1991) 2237. https://doi.org/10.1149/1.2085956
  65. P.R. Roberge, Handbook of Corrosion Engineering, McGraw-Hill, New York, 2000.
  66. O.L. Riggs, R.M. Hurd, Corrosion 23 (1967) 252. https://doi.org/10.5006/0010-9312-23.8.252
  67. D.D.N. Singh, A.K. Singh, Corrosion 49 (1993) 594. https://doi.org/10.5006/1.3316090
  68. G. Bannerjee, S.N. Malhotra, Corrosion-NACE 48 (1992) 10. https://doi.org/10.5006/1.3315912
  69. F. Bentiss, M. Traisnel, M. Lagrenee, Corrosion Science 42 (2000) 127. https://doi.org/10.1016/S0010-938X(99)00049-9
  70. X. Li, S. Deng, G. Mu, H. Fu, F. Yang, Corrosion Science 50 (2) (2008) 420. https://doi.org/10.1016/j.corsci.2007.08.014
  71. H. An, S.R. Jang, R. Vittal, J. Lee, K.J. Kim, Electrochimica Acta 50 (2005) 2713. https://doi.org/10.1016/j.electacta.2004.11.017
  72. P. Villamil, J. Corio, S. Rubim, Agostinho, Journal of Electroanalytical chemistry 472 (1999) 112. https://doi.org/10.1016/S0022-0728(99)00267-3

Cited by

  1. Corrosion of a Carbon Steel Cylindrical Band Exposed to a Concentrated NaCl Solution Flowing through an Annular Flow Cell vol.162, pp.8, 2015, https://doi.org/10.1149/2.0201508jes
  2. Theoretical and experimental studies on the corrosion inhibition potentials of 3-nitrobenzoic acid for mild steel in 0.1 M H2SO4 vol.2, pp.1, 2014, https://doi.org/10.1080/23312009.2016.1253904
  3. A statistical approach to estimate state variables in flow-accelerated corrosion problems vol.26, pp.7, 2014, https://doi.org/10.1080/17415977.2017.1372434
  4. Corrosion Characteristics of ASTM A106 Grade B Carbon Steel Pipelines Exposed to Sodium Sulfate Solutions vol.7, pp.1, 2018, https://doi.org/10.1520/mpc20180026
  5. Technical Aspects and Energy Effects of Waste Heat Recovery from District Heating Boiler Slag vol.11, pp.4, 2014, https://doi.org/10.3390/en11040796
  6. Novel acrylamide ionic liquids as anti-corrosion for X-65 steel dissolution in acid medium: Adsorption, hydrogen evolution and mechanism vol.1168, pp.None, 2018, https://doi.org/10.1016/j.molstruc.2018.05.035
  7. SYNTHESIS, CHARACTERIZATION AND THERMAL PROPERTIES OF 2,2 $ ^{'}$ -DIBENZIMIDAZOLYL BUTANE AS A NOVEL CORROSION INHIBITORS FOR MILD STEEL IN SULFURIC ACID vol.27, pp.3, 2014, https://doi.org/10.1142/s0218625x19501154
  8. An amino‐based protic ionic liquid as a corrosion inhibitor of mild steel in aqueous chloride solutions vol.71, pp.7, 2014, https://doi.org/10.1002/maco.201911347
  9. The effect of temperature on electrical energy production in double chamber microbial fuel cell using different electrode materials vol.42, pp.p5, 2014, https://doi.org/10.1016/j.matpr.2020.12.817